ConSol 3%

Consulting & Solutions W| ru nterneh men 1

|

&
"4

ConSol=cCM

Process Designer Manual

ConSol" Software GmbH
FranziskanerstraBe 38
D-81669 Miinchen

Tel. +49-89-45841-100 H
Fax. +49-89-45841-116 ~ ’
vertrieb@consol.de /
www.consol.de

ConSol*CM Process Designer Manual (CM up to version
6.9.3)

ConSol* Software GmbH FranziskanerstraRe 38 Tel.: +49 (0)89-458 41-100 E-Mail: info@consol.de
D-81669 Miinchen Fax: +49 (0)89-458 41-111 Internet: www.consol.de

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Table Of Contents

1

Introduction to the ConSol*CM Process Designer

1.1 ConSol*CM for Business Process Management

1.2 This Manual

1.2.1 Before You Read this Book ...

1.2.2 The Book's Structure

1.2.3 Layout Explanations

O 00 00 0 N O

1.3 Business Processes

1.4 Introduction to Workflows in ConSol*CM

1.5 The ConSol*CM Process Designer at a Glance

1.5.1 Modeling Workflows

1.5.2 Tickets and Activities

1.5.3 Drag & Drop Modeling of Workflow Components

1.5.4 Scopes and Nesting of Scopes

1.5.5 Modeling Escalation Mechanisms (Triggers and Wait States)

1.5.6 Modeling Interrupts and Exceptions

1.5.7 Scripting Capabilities

1.5.8 Versioning of Workflows

Basic Components of ConSol*CM Processes

2.1 General Objects

2.2 Data Fields

2.2.1 Data Fields in ConSol*CM Versions 6.8 and Earlier

2.2.2 Data Fields in ConSol*CM Versions 6.9 and Higher

2.3 Standard Ticket Data Fields

ConSol*CM Process Designer Manual - Work with the Process Designer Application
3.1 Work with the Process Designer Application

3.1.1 Steps to Perform for a New Process

3.1.2 Start of the Process Designer

3.2 Process Designer GUI

3.2.1 Introduction to the Process Designer GUI Elements

3.2.2 The Script Editor

ConSol*CM Process Designer Manual - Components of ConSol*CM Workflows

4.1 Components of ConSol*CM Workflows

4.1.1 Introduction

4.2 Workflow Components: START Node

4.2.1 Properties of a Start Node

4.3 Workflow Components: END Nodes

4.3.1 Properties of an End Node

4.4 Workflow Components: Scopes

4.4.1 Introduction to Scopes
4.4.2 Defining a New Scope

4.4.3 Properties of a Scope

4.4.4 Scopes and Views

10
11
12
12
13
14
15
15
16
16
17
18
19
21
21
21
23
24
25
25
25
27
27
42
44
45
45
46
46
48
49
51
51
53
55
56

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

4.5

4.6

4.7

4.8

5 Process Logic

51
5.2

53
54
5.5

6 ConSol*CM Process Designer Manual - Workflow Programming

6.1

6.2

6.3

6.4

Workflow Components: Activities

57

4.5.1 Introduction to Activities

57

4.5.2 Properties of an Activity

59

4.5.3 Process Logic of Activities

61

4.5.4 Examples for Activities

62

Workflow Components: Decision Nodes

67

4.6.1 Introduction to Decision Nodes

67

4.6.2 Properties of a Decision Node

67

4.6.3 Example for a Decision Node

68

ConSol*CM Process Designer Manual - Adornments (Triggers and ACFs)
4.7.1 Adornments (Triggers and ACFs)

71

71

4.7.2 Time Triggers

72

4.7.3 Mail Triggers

83

4.7.4 Business Event Triggers

91

4.7.5 Activity Control Forms (ACFs)

Jump-out and Jump-in Nodes

4.8.1 Introduction

4.8.2 Jump-out Nodes

4.8.3 Jump-in Nodes

Activities

Interrupts and Exceptions

5.2.1 Interrupts

5.2.2 Exceptions

Loops (Errors in Workflows)

Process Logic of Time Triggers
Process Logic of Business Event Triggers

Workflow Programming

6.1.1 Introduction

6.1.2 Additional Tools for Workflow Programming

6.1.3 Notes About Method Syntax

Important Classes and Objects

6.2.1 Introduction

6.2.2 Important Objects

6.2.3 Convenience Classes and Methods

Working With Data Fields

6.3.1 Introduction to Data Fields

6.3.2 Data Types for Data Fields

6.3.3 Custom Fields for Ticket Data

6.3.4 Data Fields for Customer Data

6.3.5 Using Data Fields for (Invisible) Variables

Sending E-Mails

6.4.1 Introduction to Sending E-Mails

6.4.2 Important Methods

6.4.3 Examples

102
110
110
111
113
115
116
117
117
118
119
120
121
122
123
123
123
124
126
126
126
127
130
130
132
133
141
149
150
150
150
151

4 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.5 Working with Path Information

6.5.1 Introduction

6.5.2 Retrieve Path Information for a Workflow Element

6.5.3 Examples for the Use of Path Information

6.6 Working with Calendars and Times

6.6.1 Introduction

6.6.2 Calculating with Dates and Times without a CM Business Calendar
6.6.3 Calculating with Dates and Times Using a CM Business Calendar

6.7 ConSol*CM Process Designer Manual - Working with Object Relations

6.7.1 Working with Object Relations

6.7.2 Working with Ticket Relations

6.7.3 Working with Customer Relations (Data Object Relations)

6.8 Searching for Tickets and Customers Using the ConSol*CM Workflow API
6.8.1 Introduction

6.8.2 Searching for Tickets

6.8.3 Searching for Units (Contacts and Companies)

6.9 Debug Information

6.9.1 Introduction

6.9.2 Using Statements for Debug Output

7 Best Practices

7.1 The Basic Organization of a Workflow: Using Scopes

7.1.1 Variant A: Use of a Global Scope

7.1.2 Variant B: Use of Three or More Main Scopes

7.2 The Position of the START Node

7.3 Store Some Workflow Scripts in the Admin-Tool

7.3.1 When to Use Admin-Tool Workflow Scripts
7.3.2 How to Use Admin-Tool Workflow Scripts

7.4 Consider the Use of Trigger Combinations Well

7.5 Do Not Trigger Ticket Update Events If Not Really Required

7.6 How to Use the Disable Auto Update Parameter

7.7 Avoid Self-Triggering Business Event Triggers

8 Deploying Workflows

8.1 Introduction and Workflow Life Cycle

8.2 Engineer Rights Required for Workflow Deployment

8.3 Actions During Workflow Deployment

9 Appendix A - List of Annotations

9.1 Alphabetical List of Field Annotations (up to Version 6.9.3)

9.2 Alphabetical List of Group Annotations (Version 6.8 and Older)

9.3 Alphabetical List of Group Annotations (Version 6.9 and Higher)

10 Appendix B - Glossary

11 Appendix C - System Properties

11.1 System Properties Ordered by Module

11.2 System Properties Ordered by Property Name

12 Appendix D - Trademarks

13 Index

157
157
157
158
159
159
160
161
162
162
163
170
178
178
178
182
184
184
184
186
187
187
188
190
191
191
191
193
196
197
199
200
201
202
203
205
206
220
227
230
236
237
286
336
337

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

1 Introduction to the ConSol*CM Process
Designer

® Introduction to the ConSol*CM Process Designer

® ConSol*CM for Business Process Management

® This Manual
® Before You Read this Book ...
® The Book's Structure
¢ Layout Explanations

® Business Processes

® |ntroduction to Workflows in ConSol*CM

® The ConSol*CM Process Designer at a Glance
®* Modeling Workflows
® Tickets and Activities
® Drag & Drop Modeling of Workflow Components
® Scopes and Nesting of Scopes
®* Modeling Escalation Mechanisms (Triggers and Wait States)
® Modeling Interrupts and Exceptions
® Scripting Capabilities
® Versioning of Workflows

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 7

1.1 ConSol*CM for Business Process Management

ConSol*CM is a customer centric business process management system. Using ConSol*CM you can
control and steer business processes with a strong focus on human communication and interaction, e.g.
user help desk, customer service processes, marketing and sales, or ordering processes. Basically, every
process that is in operation in a company can be modeled and brought to life with ConSol*CM6.

Using ConSol*CM you can handle all components which are relevant in business processes to represent
and control your company's processes in an optimal way. ConSol*CM is used in various different industries
and branches ranging from insurances and banks over fashion designing companies to producers of ticket
vending machines or car washes. The flexible process designing mechanism and workflow engine provide a
perfect basis for the modeling and controlling of business processes of different kinds.

8 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

1.2 This Manual

1.2.1 Before You Read this Book ...

When you read this manual, your company is presumably using ConSol*CM6 as a business process
management tool and it is your job to administer the system and to implement your company's processes in
the application. The book will help you to understand the principles of ConSol*CM workflows and to learn the
work with the Process Designer. Numerous tips and tricks provided by our experienced consultants will help
you to find the best way to improve your processes.

Before you start work with the Process Designer you should have a profound knowledge of ConSol*CM
administration, because programming CM workflows requires the usage of several CM components which
are configured before (or while) the workflow development takes place. So please read the ConSol*CM
Administrator Manual first.

1.2.2 The Book's Structure

1. First, some basic components of business processes in general are explained (see this section).

2. Then, an overview of the implementation of the processes in ConSol*CM is given (see section Basic
Components of ConSol*CM Processes).

3. Following this, the Process Designer is explained in detail (see sections \Work with the Process
Designer Application and Components of ConSol*CM Workflows).

4. The sections Process Logic, Workflow Programming, and Best Practices provide expert knowledge
about workflow development.

5. Since every workflow has to be deployed to become active, the section Deploying Workflows treats
this topic.

6. In the appendices, you find lists of all important terms that are used in the book (glossary), of all
annotations (important for the GUI design), and properties (important for the CM system
management). Please see also the trademarks page.

1.2.3 Layout Explanations

In order to emphasize and/or mark a section, icons are used.

@ Information:

This is an additional information.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

", Attention:

This is an important note. Be careful here!

& Warning:

This is a warning!

e Tip:

This is a recommendation from our every-day consulting life.

10 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

1.3 Business Processes

In a business process, a certain number of tasks have to be performed in a defined order to achieve a
specific goal.

The following components are (usually) relevant in business processes. Please see section Basic
Components of ConSol*CM Processes to gain an overview of the ConSol*CM objects which represent those
components.

® Process
This is a collection of tasks which have to be performed in a certain order. Tasks might be serialized
or performed in a parallel way. In ConSol*CM, the process is modeled by one or more workflows.
ConSol*CM can model single processes and can also manage complex process chains.
Each process has to have a defined input and a defined output. The object which represents a case
and which runs through the process is a ticket. For the end user, it can be named Ticket or Case or
any other required term.
®* Roles and responsibilities
Usually, the persons who work in a process represent different roles, i.e. different responsibilities. In
ConSol*CM each engineer, i.e. each person who works with the system, can have one or more roles.
® Access permissions
A business process management system can control various processes in a company. Therefore the
assignment and control of access permissions is a core functionality. In ConSol*CM, the access
permissions are assigned to roles.
¢ Customer
This is the person who has an interest in the outcome of the process. In ConSol*CM, there is always
one main customer for a ticket. This can be a person, i.e. a contact, or this can be a company. More
customers can be added.
® Tasks
In a business process, there might be several kinds of tasks:
® manual tasks
® system-aided tasks
® fully automatic tasks
ConSol*CM can manage all types of tasks. For manual tasks, there are to-do lists for the engineer
and several mechanisms which guarantee that no task will be forgotten or ignored.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 11

1.4 Introduction to Workflows in ConSol*CM

One of the core components of ConSol*CM is a powerful workflow engine. Hence, a process is represented
in ConSol*CM by a workflow. This is the technical representation of the consecutive steps which are
required to fulfill all steps which should be performed during the business process.

@ Examples:

In an IT helpdesk environment, a workflow could consist of the steps:
New Ticket - Accept Ticket - Work on Solution - Inform Customer - Close Ticket.

In a sales process these steps could be:
First Contact: Lead - Second Contact: Opportunity - Contract Candidate - Contract.

The workflow containing all required steps runs in a workflow engine. In this manual you will get to know the
details about all components of a workflow and how to use them to build the workflow which represents your
business process.

A workflow ...

® represents a specific process, e.g. the steps that have to be performed to handle a customer request.
® puts activities and decisions in a defined order.
* defines the possible paths a ticket can take.

The case or request which has to be dealt with is represented by a ticket, i.e this is the object which passes
through the workflow.

The following picture shows the graphical representation of a simple help desk process.

Put ticket
on hold

00y

Hew IT ticket Check SLA Work on ticket Close ticket
{with solution)

. 2@
Ty

Close ticket
{without solution)

- @@

Fig. 1: ConSol*CM Process Designer - Process: Simple Representation

12 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

1.5 The ConSol*CM Process Designer at a Glance

1.5.1 Modeling Workflows

A business process is modeled in ConSol*CM using the Process Designer, an application which is an
integral element of a standard ConSol*CM installation. A process can be represented by one or more
workflows, i.e. you use the Process Designer to develop workflows.

» In ConSol*CM terminology, a workflow always represents the technical entity, whereas a process
represents the business process from the logical or management point of view.

One of the Process Designer's advantages is that there is no procedural gap between process design and
workflow implementation. You can design a workflow for a process using the graphical interface of the
Process Designer and as soon as you have assigned the workflow to a queue and have defined roles and
users, the process comes alive and engineers can work with it. That means you can use the Process
Designer for both steps which are of importance when you want to create IT-supported business processes:

®* Model and design the process from a logical point of view
* Implement the process in a technical instance

Due to this flexibility, you can start with a simple version of a workflow, usually in a test environment, and
develop the desired functionalities of the process using an iterative approach. In each step of the
development and optimization process the team of engineers can test if the use cases are represented as
desired.

The graphical representation of a workflow in the Process Designer is very similar to the Business Process
Model and Notation (BPMN) and can be handled in a very intuitive way.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 13

Set parameters

o

Re-activate ticket

' Put ticket on hold
Ticket in progress &
Re-activate ticket =

Close ticket with Close ticket without

golution
solution

® @

®© ®©

Fig. 2: ConSol*CM Process Designer - Workflow Modeling the Process in the Previous Figure

Read the following sections to get a first impression of the Process Designer's features and functionalities.
All topics will be explained in detail in the respective chapters of the manual.

1.5.2 Tickets and Activities

Each case, which has to be treated, will be represented by a ticket. Thus a ticket is a concrete run through a
workflow. This can be a request, an order, or any other task which has to be processed in a business
process.

When a new ticket is created within ConSol*CM, it is associated with a workflow (via the queue it belongs
to). At first the new ticket is in the START node. During its further life cycle the ticket runs through the
various activities of the workflow. Its life cycle ends when it has reached an END node.

14 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

You model a process in a workflow by connecting activities in a specific order. The result is a directed flow
graph. It shows which activities have to be carried out for a ticket in order to run through the workflow (and
thus the business process) successfully. Workflows can have branches so that different flow paths are
possible. In this way, you can make sure that, for example, a ticket first has to be accepted, then the problem
has to be solved, then the solution has to be documented. Only then the ticket can be closed.

A3 ped Ferl
ACCIF1EYL

Fig. 3: ConSol*CM Process Designer - Two Sequential Manual Activities

There are manual and automatic activities. Manual activities require engineer interaction and are offered as
Workflow activities in the Web Client. In contrast, automatic activities are performed without any human input
and are kept away from the engineer. This enables ConSol*CM to save time for the engineer and to process
data from various sources behind the scenes. Only when user interaction is required, the process will come
to a halt and wait for engineer input.

Workflow activities
Close immediatehy
Deny ticket

Ask for approval

Fig. 4: ConSol*CM/Web Client - Workflow Activities

1.5.3 Drag & Drop Modeling of Workflow Components

You can develop your workflow easily and intuitively using drag-and-drop. Drag the required workflow
elements, e.g. an activity or a decision node, from the palette to the work space and link them. Then adjust
the properties of the elements within the Properties Editor.

(=][3) : Palette » x

- Workflow elements -

| ©5tar:

Fig. 5: ConSol*CM Process Designer - Drag & Drop Activities

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 15

Using basic elements you build complex workflows step by step. In this way you can model even the most
sophisticated business processes.

1.5.4 Scopes and Nesting of Scopes

During a process, a ticket passes through different status, e.g. new ticket, pre-qualification, active work, and
documentation. It might even have to be set on hold for a certain period of time. All those status are
represented by scopes. In each scope, there can be one or more activities. In this way, it is easy to develop
workflows with a clear structure. Scopes can even be organized in a hierarchical way, e.g. during
documentation the ticket has to be set on hold. So, using hierarchical scopes you can even keep track of
complicated processes. Choose the level of detail you need any time you want.

Service Desk

Hew ticket

4

ew IT ticket

Fig. 6: ConSol*CM Process Designer - Nesting Scopes

1.5.5 Modeling Escalation Mechanisms (Triggers and Wait
States)

In most business processes, adherence to schedules and deadlines is indispensable. ConSol*CM helps
stick to deadlines and prevents delays by providing automatic timer triggers. These triggers measure for
example the reaction time or they initialize reminders.

Eeaction time ok?

(]

i 1 . .
Escalation ! Eeaction time ok

®

Fig. 7: ConSol*CM Process Designer - Triggering Processes

16 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

1.5.6 Modeling Interrupts and Exceptions

In the real world, tasks of a process are not always performed step by step, but may be interrupted by
exceptional events. These can be various external incidents. To model such interrupts sequentially is often
very complex or even impossible. The Process Designer provides extensive tools to do this.

o

E-mail receiwved

Fig. 8: ConSol*CM Process Designer - Modeling Interrupts

1.5.7 Scripting Capabilities

The process which has been modeled as a ConSol*CM workflow cannot only consist of basic elements like
activities or decision nodes. In every node of the workflow a script can be added to provide the intelligence of
the process. For example, e-mails can be sent to customers or to engineers, interactions with other systems
can be implemented, tickets can be handed-over. Basically, all operations which can be implemented in
Groovy scripts can be performed.

r -
& ° Edit script &J

Script

1 |workflowhApi.setGroupProperty("Service Fields", GroupFropertyIype.VISIBLE, "open")

2

3 |def do_send = ticket.get("MyFields", "Sendlotice™)

4 |if (do_send) {

5 Unit contact = ticket.getMainContact ()

[def email = contact.get("emzail"™)

7 def text = workflowlpi.renderTemplate("Notice_3e

a def reply to = configurationService.getValue ("cm gdapter™, "mail.reply.ta")

2] def subkj = ticket.getSubject()

10

11 workflowhpi.sendEmail {(email, subj, text,reply to, null)

1z

13 |}

Compilation result

Mo errars

| oK

| Cancel |

[= = 4

Fig. 9: ConSol*CM Process Designer - Script of an Activity

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

1.5.8 Versioning of Workflows

Business processes are changing constantly, following the changing requirements of the economic and

17

technical environment. The Process Designer provides continuous versioning of installed workflows. In this
way, you can easily discard a new workflow (e.g. when you have tested a new implementation during system
development) and go back to one of the previous versions.

& Load workflow

2|

Name filter: |

name ver,., status modification date workflow description
helpdesk1 1.0 currently deployed |3M10/14 10:01 AM | First level Helpdesk
helpdesk2 1.0 currently deployed |3/1M10/14 10:01 AM | Second level Helpdesk
Lales 1.0 currently deployed | 31014 10:01 AM

WFL_AccountManagement 1.0 currently deployed |3M10/M14 10:01 AM | WFL_AccountManagement
WFL_ServiceDesk2 71.1 SeEM4 830 AN Service Desk Workflow?2 (Snap
WFL_ServiceDesk2 7241 SiEM4 234 AN Service Desk Werkflow?2 (Snap
WFL_ServiceDesk2 73.0 |currently deployed | 5/6M4 5:34 AM Service Desk Workflow2
WFL_ServiceDezsk3 3.1 G274 3.53 PN Service Desk Workflow3 (Snap
WFL_ServiceDesk3 4.0 currently deployed |6/27/14 3:53 PM Service Desk Workflow3

Fig. 10: ConSol*CM Process Designer - Workflow Versions

18 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

2 Basic Components of ConSol*CM Processes

® Basic Components of ConSol*CM Processes
® General Objects
® Data Fields
® Data Fields in ConSol*CM Versions 6.8 and Earlier
¢ Data Fields in ConSol*CM Versions 6.9 and Higher
® Standard Ticket Data Fields

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 19

2.1 General Objects

During process design and workflow development you will have to deal mainly with the following objects:
Mandatory objects:

® Ticket
This represents the case. Depending on the use case this can be, for example, a help desk case, a
sales opportunity, a direct order, or a service request.

®* Primary customer
This is the person, i.e. the contact, who is the client, the initiator of the ticket. In ConSol*CM version
6.9 and higher, this can also be a company. The customer represents the external side of the ticket.

® Queue
This is the organizing unit within the ConSol*CM system which groups tickets of one realm and which
is access point for the assignment of access permissions and of the workflow. One queue has exactly
one workflow which cannot be changed. For example, in a company, there could be one queue for the
sales department, one for the customer service, and one for the internal IT.

®* Engineer
This is the person who is responsible for completing the tasks in the ticket. A ConSol*CM engineer
has a login and password for the Web Client. The main engineer can also be called the ticket owner.
It can change during the process.

* Workflow
This is the design or model for the process. A workflow is assigned to a queue (and can be assigned
to more than one queues). Hence, all tickets which are in this queue run through the process defined
by this workflow. The workflow elements, e.g. activities, conditions, or decisions, represent the most
important means in ConSol*CM to configure and control the process flow. One workflow can be
assigned to one or to several queues, e.g. the IT service desk team as well as the customer service
team, both could work with the workflow serviceWorkflow.

® Custom fields (CM versions 6.8 and 6.9) and data object group fields (CM version 6.9)
These are the data fields which are used to define the data model for the ticket and customer data.
They also determine the GUI design of the Web Client. Custom fields are never defined on a
single-field basis, but always in custom field groups.
In ConSol*CM version 6.9 and higher, we call the data fields for ticket data custom fields and the data
fields within the customer data model data object group fields.

Optional objects:

® One or more additional customer(s)
In addition to the main customer, i.e. main contact or (version 6.9 and higher:) main company, more
contacts (or companies) can be added to a ticket. For each additional customer a customer role might
be assigned. For example, there might be a representative for someone who has opened the ticket or
the team manager should also be a contact for a support case. An additional customer can become
the main customer during the process and vice versa.

20 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

® One or more additional engineer(s)
Additional engineers can be added to a ticket in specific roles which are defined as required. For
example, a supervisor might be set as additional engineer to give an approval (role approver) or a QA
team member can be added to the ticket in the role QA to check the result before the ticket is closed.

oN
INTERNAL =/ RO, EXTERNAL

Engineer access rights on customer

Engineer access rights on queues
groups defined by role(s)

defined by role(s)

0)
o a

"""7"_“_”__”7 T - -
¢ ,’1 Main customer
Engineer (ticket owner) e
- ah

Lo ,
it ,,’ Additional .~
Additional enginesrs g .1 customer
¢
’, .l L.
% N e —— Customer group
Custom 4 of customer J
fields for 7 .J group to ’:‘ :
ticket data +* aqueue i Dala object group
s I fields for customer
Workflow |, data model
L ~
Assigment
of customer QUEUE
group(s)
to queue
Admin-Tool Admin-Tool

Fig. 1: ConSol*CM - Basic Principle

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 21

2.2 Data Fields

2.2.1 Data Fields in ConSol*CM Versions 6.8 and Earlier

Custom fields are data fields of a specific data type which can contain ticket or customer data. The custom
fields in their entirety define the data model of the ConSol*CM system. All custom fields can be configured
as required, i.e. you as a system administrator can create as many custom fields as you think suitable and
can place them in the Web Client GUI where you like or where the best usability will be given.

Custom fields are always managed in custom field groups never on a single-field basis. Of course, you can
read or set the value of a single field when you write workflow scripts, but in the Admin-Tool as well as in the
Process Designer, a great number of operations can only be performed for custom field groups, e.g.
fading-in the group, placing the group data in a tab, or assigning the custom field group to a queue. In
scripts, in general, you access a field using the following notion:

Access to content of custom field, CM versions 6.8 and earlier

ticket:
ticket.get("<group name>. <field nane>")

unit:

unit.get("<field name>")

The initial definition of custom field groups and custom fields is done using the Admin-Tool. Ticket data are
defined in the Custom Field Administration section for Ticket data and Customer data in the respective tabs.

2.2.2 Data Fields in ConSol*CM Versions 6.9 and Higher
Starting with CM version 6.9.0, there are two types of data fields:

® Custom fields
Used to define ticket data, managed in custom fields groups, as known from previous CM versions.
® Data object group fields
Used to define customer data as part of the FlexCDM, the new customer data model. Managed in
data object groups.

You can access the content of a custom field or a data object group field using the following notation:

Access to content of data object group field, CM versions 6.9 and higher

ticket:
ticket.get("<group name>. <field nane>")

unit, for one field:
uni t.get ("<group name>:<field nane>")

22

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 23

2.3 Standard Ticket Data Fields

Some fields do not have to be defined as custom fields in the Admin-Tool, because they are always present.
These are the following fields of a ticket:

® Ticket ID

Invisible for the user, only internal use in the database.
* Ticket name

Visible in the Web Client, usually called ticket number.
® Ticket subject

Must be set.
® Create date

Is set automatically by the system.
® Engineer/ticket owner

Can be null or one of the engineers.
® Queue

The current queue of the ticket.

24 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

3 ConSol*CM Process Designer Manual - Work
with the Process Designer Application

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 25

3.1 Work with the Process Designer Application

® Work with the Process Designer Application
® Steps to Perform for a New Process
® Start of the Process Designer

3.1.1 Steps to Perform for a New Process

The work with the Process Designer is one of the first steps in the pipeline of steps which you have to
perform when you want to create a new process with users, roles etc. Before we start explaining how to work
with the Process Designer, we will therefore provide a short list of tasks you have to do:

1. Design and deploy the workflow using the Process Designer.

2. Create a new queue with this workflow. Here, you will also need the definition of all required custom
fields and customer groups.

3. Create the views for the new users/engineers using the scopes of the new workflow.

4. Create one or more role(s) that have access to the new queue. Keep in mind that the access to the
customer group(s) must match that of the queue.

5. Create one or more engineers/users and assign the new role(s) to them.

6. Check the login in the Web Client. Can you create a ticket in the new role?

3.1.2 Start of the Process Designer

You can start the Process Designer on every PC or laptop where a standard web browser is installed
(please see System Requirements) and which has network access to the ConSol*CM server and database.

To start the Process Designer, open the ConSol*CM start page and click on the Process Designer hyperlink.
Java Web Start (JWS) is required to start the Process Designer application which runs on the local machine.
However, JWS is an integral part of all Java distributions nowadays so that should not be a problem.

@ Information:

In case the Process Designer cannot be started, the network connection might be the problem. On
Windows systems, check the Java parameters for network connections. Use direct connection
might be required. On Linux systems, check the proxy settings.

26

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

ConSol*CME - Start Page

CenSel*CMG Web Clieat

This & the s part of e €onSol CHE Applcation Ror the o users. The me clent s the user
of spechic usness domain,

Plearse 1zse the kolowsng ek 10 0ot Inko the:web clent Yiou might want bes bockmark tha=

Pladae pegony’ 9 | refem 17 Extered Support

ConSol*CME Admin Tool

The: Ackman Toes s box B ey, e, Rkt v e, 1 b of the EnrSarCHE Server,

o, G L 260 RN, 190 peeel i weth

Folowing thae ik should B ercgi 10 ST the Admin Took

& i ot ek s 8 vl e s b b6l ok

ConSel*CME Process Deskgnes

The 5 aerg
it tis desner. The desgeer aned this the workdiows are focused on

Following the link should be enough to start the Process Designer:
2 oy the G + http://cm6-demo.int.consol.de/workflow/master. jnip \

Sarroe i o Ak T, recied i o eveLmmtInen:
& et NELp)t 36 L e 88 ety A TSTER i)
Same system recuarements i for Adme Tool

e MuleSoftoom Posvesed bry Mule. MuieSoft i Open for integrastion, Copyight () 2000-200% MuleSoft nc.

n

CMB Process Designer Login

Password :l...l.l

Fig. 1: ConSol*CM - Start of the Process Designer

Log in with an administrator account or with an account which has the workflow management permissions.
Please refer to the ConSol*CM Administrator Manual, section Role Administration, for details.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

3.2 Process Designer GUI

27

® Process Designer GUI
® Introduction to the Process Designer GUI Elements
® Overview: GUI Sections
®* Main Menu
* Workflow Editing Panel
® Loading and Deleting Workflows
® | oading a Workflow
® Deleting a Workflow
® Palette for Elements and Adornments
®* Elements
® Adornments
® The Properties Editor (Example: Activity)
® The Script Editor

3.2.1 Introduction to the Process Designer GUI Elements

Overview: GUI Sections

The Process Designer GUI contains the following elements, please see the next figure and the list below.

File Edit Options View Help

Min AT g w @R ed X N\ Qw6

menu
H Workflow 1 x|
]
<

/I
L]
Workflow -
editin Startl
Canel @ oo

@
l
r

|- Adornments

Time trigger

@ wail trigger
o Event trigger

@& Actvity Convrol Form

script
history visibiity

default -

disable auto update [

Endi

Fig. 1: ConSol*CM Process Designer - GUI Elements

Palette for
Elements and
Adornments

Properties editor
(opened for

element which is
selected in GUI)

28 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Main Menu

The main menu contains the menu items as text entries and a menu icon list.

Menu main entry Menu sub entry Icon Note

File
New ... * Start a new workflow.
Load ... % Load a new workflow.

Opens table with
existing workflows, see
section Loading a
Workflow.

Delete ... @ Delete a workflow.
Opens table with
existing workflows, see
section Deleting a
Workflow.

Import ... i Import a workflow from a
(proprietary workflow
format) file.

Save ... % Save workflow (existing
version).

Save as new version ?{} Save the workflow as a
new version.

Export & Export the workflow to a
file. Opens file browser
of the operation system.
The workflow is saved in
a proprietary workflow
format (.par).

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

29

Menu main entry Menu sub entry
Deploy
Login
Log out
Exit
Edit
Clear current tab
Options

Icon

®

Note

(Save as new version
and) deploy the
workflow, i.e. install the
workflow in the system.
The system might
prompt you for a
decision:

® Keep position of
the tickets in the
process (see
section Actions
During Workflow
Deployment).

¢ Startat START
node again.

Log in to the Process
Designer. Usually the
login window is
displayed directly after
the start of the Process
Designer. As login an
account with
administrator
permissions or with the
permissions to manage
workflows (see ConSol*
CM Administrator
Manual, section Role
Administration) is
required.

Log out. Does not exit
the Process Designer.

Exit/stop the Process
Designer application.

Delete the entire
workflow, all elements in
the main editing panel.

30 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Menu main entry Menu sub entry Icon Note

Local configuration 2

Hide/Show palette

Hide/Show properties

Hide/Show explorer

Show ticket transfer
history

Display pop-up window
where you can select
the display language of
the Process Designer.
All languages which
have been configured
for the system (see
section Configuration in
the ConSol*CM
Administrator Manual)
are available. The labels
in the workflow in the
main editing panel will
be displayed in the
selected language.

View

Normal zoom @‘ Display workflow in
default zoom (like at
start of Process
Designer).

Expand all scopes Rf:l Display all scopes in the
expanded version.

Collapse all scopes Display all scopes in the

collapsed version.

Do (not) display palette
in GUI.

Do (not) display
Properties Editor in GUI.

Do (not) display explorer
(tree).

Opens a pop-up window
where the parameters
for the ticket transfer
during the deployment
of a new workflow are
displayed:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 31

Menu main entry Menu sub entry Icon Note

* Workflow name
Name of the
workflow.

® Version
Version of the old
workflow.

® Starttime
Start of the
transfer, will be
the start time of
the Deploy operat
ion.

® Endtime
End of the
transfer, after this
time the new
workflow will be
in full operation.

®* Transferred
tickets
Number of tickets
which have been
transferred, i.e.
which had to be
touched by the
system during
workflow
deployment.
Should be
identical to the
sum of open
tickets in all
queues which
use the workflow.

® Details
Additional
information
concerning the
deployment with
ticket transfer.

32 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Menu main entry Menu sub entry Icon Note

IDE log Opens the Log File
Editor in the lower half
of the screen and
displays the
user-specific log file of
the Process Designer:
<USER_HOME_DIR>\.c
maslwfeditorR1\varllog

Help

About Display version

information about the
Process Designer and
about the Java virtual
machine it uses in the
current configuration
(this is the JVM of the
browser plug-in).

Workflow Editing Panel

To design a workflow define the workflow elements using the graphical layout mode of the Process Designer
and add the scripts to the elements where required.

A new element can be added to the workflow using drag-and-drop of the element from the palette.

A new element as successor of an existing element can also be created by using the context menu (right
mouse click) of an existing element, e.g. for an activity (see the following figure). The new element and the
connection to this element will be created.

Ticket in progre=as

Add successor activity
or

Add successor decision
Add successor scope

Copy node's path to clipboard

Fig. 2: ConSol*CM Process Designer - Context Menu for a Workflow Activity

A new connection between elements is established using the left mouse button while pressing the CTRL key
and just drawing the line. If the connection goes from one scope to another, the scope entry and exit points
are added automatically.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

*CMB Proc

File Edit Options View Help

P8+ B8 « o X\ Qwd

0

| Workflow 1= !

LBO

EN:

New i
connection i
between
elements:
SHIFT =+ left
mouse button

@) ctity Contrl Form

New element
from palette:
drag-and-drop

»
~ Definition of
E properties for
[® selected element:
® properties editor
I
L]

Fig. 3: ConSol*CM Process Designer - Adding New Elements and Connections

You might consider using a global scope for each workflow. Please refer to the Best Practices section for
more information about how to design good workflows.

Loading and Deleting Workflows

Loading a Workflow

When you have selected the icon or menu item Load, a table with all available workflows is displayed.

§ Load workflow E)
Name filter: |

name A& version status modification date workflow description

ExampleWorkflow 01 2Ma3M4 8:05 PM

Sales 1.0 currently deployed 822113 10:40 AM

WFL_ServiceDesk2 X 2/19/14 9:55 AM Service Desk Workflow2 (Snapshot of 5.0)
WFL_ServiceDesk2 6.1 2/19/14 9:56 AM Service Desk Workflow2 (Snapshot of 6.0)
WFL_ServiceDesk2 71 2M8M14 10:45 AM Service Desk Workflow?2 (Snapshot of 7.0)
WFL_ServiceDesk2 |38.0 currently deployed 2M19/14 10:45 AM Service Desk Workflow2
FL_SBNioBDesIQ 8.1 opened 2M9M4 1245 PN Service Desk Workflow2

Workflow 1 0.1 21714 11:48 AN

helpdesk1 1.0 currently deployed B/22M3 10:40 AM First level Helpdesk

helpdesk2 1.0 currently deployed /2213 10:40 AM Second level Helpdesk

Load] [

Fig. 4: ConSol*CM Process Designer - Load a Workflow

33

34 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

The table can be sorted based on a column by clicking on the little triangle icon next to the column header.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 35

The table contains the following columns:

® name
The name of the workflow as set in the name property of the workflow (click into the white space
around the global scope to see it for a workflow).

® version
The version of the workflow. This is assigned automatically by the ConSol*CM system. When a
scenario has been exported and is imported again, the numbering will start with 1.0 anew.

® status
For older workflows this field is empty. The workflows which are deployed are described by currently
deployed.
®* modification date
The date of the last modification (date when the workflow was saved) is indicated.
* workflow description
The description which has been entered into the field workflow description (not description!).

To load a workflow, select it in the list and click Load. Only single selection is possible.

Deleting a Workflow
When you have selected the icon or menu item Delete, a table with all available workflows is displayed.

o ==

Mame filter:
name VErsion status modification date workflow description
ExampleWorkflow 0.1 2M28M14 5:05 PM e
helpdeski1 1.0 currently deployed |8/22M13 10:40 AM First level Helpdesk
helpdesk2 1.0 currently deployed |8/22M3 10:40 AM Second level Helpdesk
Sales 1.0 currently deployed |8/22M13 10:40 AM

WFL_ServiceDesk

m

2M8114 5:58 PM

WFL_ServiceDesk2 51 21514 9:55 AM Service Desk Workflow2 (Snapshot of |

WFL_ServiceDesk? 61 2M5M4 5:55 AM Service Desk Workflow2 (Snapshot of |

WFL_ServiceDesk2 71 21514 10:45 &M Service Desk Workflow2 (Snapshot of

WFL_ServiceDesk2 |8.0 currently deployed | 21914 10:45 AM Service Desk Workflow2 il

WFL_ServiceDesk? 81 opened 2M8M4 12:45 PM Service Desk Workflow2 - |
Delete] [Cancel

Fig. 5: ConSol*CM Process Designer - Delete a Workflow
The table can be sorted based on a column by clicking on the little triangle icon next to the column header.

The table contains the following columns:

® name
The name of the workflow as set in the name property of the workflow (click into the white space
around the global scope to see it for a workflow).

36

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

version

The version of the workflow. This is assignhed automatically by the ConSol*CM system. When a
scenario has been exported and is imported again, the numbering will start with 1.0 anew.

status

For older workflows this field is empty. The workflows which are deployed are described by currently
deployed.

modification date

The date of the last modification (date when the workflow was saved) is indicated.

workflow description

The description which has been entered into the field workflow description (not description!).

To delete one or more workflow(s), select it/them in the list and click Delete. For every workflow you are
prompted to confirm the deletion, so when you have marked a great number of workflows to delete and then
you realize that you would like to keep one of them this is possible without canceling the entire operation.

@

Information:

You might want to delete all or almost all older workflows before exporting a scenario, because a
great number of workflows increases the size of the scenario considerably. For export and import
of scenarios, please refer to the respective section in the ConSol*CM Administrator Manual.

Palette for Elements and Adornments

As a default setting the palette is displayed in the top right corner. You can hide (and re-display) the palette
using the main menu entry Hide/Show palette under View.

The palette contains two types of workflow components:

elements
adornments

Elements
Elements are basic components which form the workflow and represent the process logic.

Ilcon

O

O

Element Note Section

Start node Is set automatically, no ~ START Node
other start node than the
default start node can
be added.

End node A workflow can contain END Nodes
one or more end nodes.

Activity The actions in the Activities
workflow, manual or
automatic.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

37

Icon

L]

Element

Scope

Decision

Jump-in

Jump-out

Note

The highest hierarchy
level in workflows

Decision node which
has a true and a false ex
it point.

Entry point for tickets
from other
workflows/queues.

Exit point for tickets. A
target queue has to be
defined. A target node
can be defined but is
optional.

Section

Scopes

Decision Nodes

Jump-out and Jump-in
Nodes

Jump-out and Jump-in
Nodes

Adornments

Adornments are objects which are assigned to a workflow activity or to a scope. Please see indicated
sections for detailed explanations.

Icon

Adornment

Time trigger

Mail trigger

Business event trigger

ACF (Activity Control
Form)

Note

Can measure time
intervals. Fires when the
end of the interval has
been reached. Can
optionally use a
business calendar.

Fires when an e-mail for
the ticket has come in.

Fires when an event has
occurred. The type of
event can be specified
(e.g. change of
engineer, change of

priority).

Defines the ACF which
should be displayed
when the activity is
executed. ACFs are
defined in the
Admin-Tool.

Section

Time Triggers

Mail Triggers

Business Event Triggers

Activity Control Forms
(ACFs)

38 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

The Properties Editor (Example: Activity)

The Properties Editor is opened for the element which has been selected in the main editing panel and
contains component-specific parameters. Some general parameters are present for all components, some
are present only for a certain type of component.

i—0

Inform team lead

Fig. 6: ConSol*CM Process Designer - Selected Activity in Workflow

‘ Properties I

(= Properties

name Inform_Team_Lead [
label Inform team lead [
description In case of VIP customer: Inform team lead! E]
sort index 10 [
overlay [:]
precondition Script i provided [:]
script Script i provided E]
activity type [Manual - |
histery visibility [default ~|
dizable auto update |:|

Fig. 7: ConSol*CM Process Designer - Properties Editor

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 39

Properties:

® name
Mandatory. This is the technical object name. When an object is newly created, you can edit the label
and the object name will be generated automatically from the label (umlauts are omitted). Afterwards,
the object name is never changed automatically but can be edited manually. Allowed characters for
names are:
® |etters (small or capital), but no umlauts
® underline
® numbers
* |abel
The localized name of the element. All languages which have been configured for the system are
available and can be filled. In the web browser of the engineer the description will be displayed
according to the browser locale. If it is not available, the label will be displayed using the default

locale.
f Localize label Y [

Mew localized value

Locale Value

Inform team lead|

English(Default)

French

German

Polish

Fig. 8: ConSol*CM Process Designer - Localization for Labels

40

® description

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Optional. A localized text can be entered which will be displayed as mouse-over in the Web Client.
This might help the engineer to understand what will happen when the respective workflow activity is

executed.

M 3 re
& Localize description

2|

MNew localized value

Locale

English{Default)

Value

In case of VIP customer: Inform team lead! |

French

German

Palish

Fig. 9: ConSol*CM Process Designer - Localized Description of an Activity

Ticket
* Printer does not work
ServiceDesk | Pre-gualify ticket
100700 Assigned to ServiceDesk, Susan | Open since 2/17/14 1:06 PM
Priority high
Ask k no
Germany
[TI=I[E customers

Main customer

Mr Luke Skywalker -
Starship Operator Prof. Dr.
luke@consolde 777

fice 4711
Space Department

yes

Fnninears

Edit | Clone | Print | Display v Workflow activities
Work on ticket
In case of VIP customer: Inform
team lead! Inform team lead
Workspace
Add | Hide
Favorites
"
-
Add | Hide

Fig. 10: ConSol*CM/Web Client - Localized Description of an Activity as Mouse-over

® sortindex
Defines:

® For activities:

The order of the activities in the list of Workflow activities in the Web Client. The higher the
number the more at the bottom of the list the activity is offered in the Web Client.

® For scopes:

The order of the tickets in the ticket list (Web Client) in views. The higher the scope index the
more at the top of the list the tickets are displayed.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 41

® overlay
Optional, for activities. Click into the orange space to define a standard ConSol*CM overlay or one
that has already been uploaded. Click on the file explorer (...) button to open the file explorer of the
operation system for an upload of a new icon. When the ticket passes through an activity the overlay
is added to the ticket icon in the Web Client. As a maximum, three overlays can be attached to a
ticket icon. This mechanism can be used for several purposes, some examples are:
®* An escalation:
The ticket has been opened without any engineer taking care of it.
® An e-mail:
The ticket has received an e-mail.
®* A note for the engineer:
E.g. another engineer has added a comment to my ticket.
s XoXelick X=X - Xl X3 X X +)
®000000@®
Fig. 11: ConSol*CM Process Designer - Properties Editor: Standard Overlays and One
Customer-Defined Overlay

(=) = g
i_.i !
T u H“"
100023 100024 100025
Mail received Escalation 1 Escalation 1 and 2

Fig. 12: ConSol*CM/Web Client - Icons with Overlays
® overlay range
Only displayed when an overlay has been set.
® activity
The overlay is attached only as long as the ticket stands behind the activity. As soon as the
next activity is executed, the overlay is deleted from the ticket icon.
® scope
The overlay is deleted when the ticket leaves the scope.
® process
Once the overlay has been attached to the ticket icon, it stays there for the rest of the process.
® next overlay
The overlay is attached to the ticket icon as long as no new overlay appears. In that case, only
the new one is attached, the old one is deleted.
® precondition
Optional, for activities. A script can be entered using the Script Editor (see section The Script Editor)
which has to return true or false. The script is executed when the previous activity has been
performed, i.e. when it becomes possible to display the activity with the precondition. In case true is
returned, the activity is displayed, in case false is returned, the activity is not displayed. An activity
which has a precondition is marked by the icon exclamation mark/precondition 0.
® script
Optional, for activities. A script can be entered using the Script Editor (see section The Script Editor)
which is executed when the ticket enters the activity.

42

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

® activity type

Mandatory, for activities. Manual or Automatic has to be selected. A manual activity is displayed in the
Web Client and has to be explicitly selected/executed by an engineer. In the Process Designer it is
marked by the icon hand/manual 4 .
An automatic activity is executed without any engineer interaction. For a detailed explanation of the
ConSol*CM process logic, please see section Process Logic.
history visibility
Mandatory, but default value has been set (default). The value defines the display levels of the Web
Client GUI where the action (that the activity has been performed) should be displayed:
® 2nd level and 3rd level
® only 3rd level
® on every level
® default
This refers to the value defined in the Admin-Tool under Ticket History for the activity
configuration. Depending on the type of activity, one of the following parameters is used:
® Manual activity or activity with overlay executed
® Activity executed after escalation
® Automatic activity executed

Ticket Edt Clone | Print | Display v

Printer does not work

Pre-gualfy ticket

100700 Assigne

high

e MO TETAuons

Germany

Customers .
History

Mr Luke Skywalker
Starship Operator Prof. Dr.
uke@consolde 777 ne []

470
Space Department
yes

Engiiéers

History Comment | E-Mai | Attachment | Time booki

Display communication = Sorting lstest first =

17.02.4413.06 #1 created by Susan ServiceDesk | Action ~

please fix, thanks

Fig. 13: ConSol*CM/Web Client - Display Levels in Ticket History

disable auto update

Defines ticket behavior of the ticket when an event has been fired or executed. Usually, after an
event, a ticket update operation is performed automatically. In case a chain of events is used you
should avoid triggering a ticket update operation after every single event. To avoid this, set disable
auto update to true in all events except for the last one. Then, only after the last event, the ticket is
updated.

3.2.2 The Script Editor

You use the Script Editor in the Process Designer to write Groovy scripts (i.e. pure Groovy and Java code is
accepted). For explanations, recommendations, and examples concerning workflow programming using
scripts, please see section Workflow Programming.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

& Edit script
Saript
if (contact.get("™V
Syntax M
. - . [W I— reTurn
highlighting ~ [ticket.
& } else {
return f
8 [}
3 °
10
{
Compilation result
| Line &: unexpected token: }
Code _|
check

1 |Unit contact = ticket.getMainContact()

FIE=)) |

TrOe

edd (String, Scring, Object) Object
IS:rinq, Gbject) Object

addField (AbstractField) wvoid
addFields (Sec) woid
addOrUpdaceField (AbatractField) wvoid
copy () Ticket

copyFrom(Ticket) woid
equala{Object) boolean

— 1T

Fig. 14: ConSol*CM Process Designer - Script Editor

The Script Editor provides the following features:

® Syntax highlighting

Groovy code is highlighted according to key words.

® Code completion

43

Code completion
(CTRL +
SPACE)

When you have entered the name of an object and the dot, the possible methods are suggested.
Press CTRL + SPACE to activate code completion.

® Code check

The entered code is controlled according to the correct use of general syntax and methods. The error
code is displayed in the Compilation result panel.

44 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

4 ConSol*CM Process Designer Manual -
Components of ConSol*CM Workflows

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 45

4.1 Components of ConSol*CM Workflows

4.1.1 Introduction

You can work with various types of workflow components to build the workflows for your ConSol*CM system.
The palette in the Process Designer offers all elements and adornments, see section Palette for Elements
and Adornments for an overview.

In the following chapters, all workflow elements and adornments will be explained in detail.

Workflow Element Explanation

START Node The first node in a workflow, see section START
Node.

END Node(s) One or more end nodes of the process. The ticket

is closed. See section END Nodes.
Scopes Realms of a process, see section Scopes.

Activities The steps of a process. Can be automatic or
manual, see section Activities.

Decision Nodes Workflow element which represents a true/false de
cision, see section Decision Nodes.

Adornments Elements to control the process flow: triggers and
activity control forms. See section Adornments
(Triggers and ACFs).

Jump-out and Jump-in Nodes Elements which connect workflows, see section Ju
mp-out and Jump-in Nodes.

46 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

4.2 Workflow Components: START Node

* Workflow Components: START Node
®* Properties of a Start Node

Every workflow contains exactly one START node. When you create a new workflow the start node is added
automatically, you do not have to add it yourself.

Service Desk

START

Hew ticket (J

C, C: Set parameters

4

New IT ticket

Fig. 1: ConSol*CM Process Designer - Start Node
The start node does not have any scripts and cannot be configured in any way.

When a ticket enters the workflow and no specific entry point has been defined, the ticket passes through
the start node.

@ Best Practices:

The start node should not be positioned within the global scope. See also section Best Practices.

4.2.1 Properties of a Start Node

: Properties I =
= Properties

name START D
label START]
history visibility |default -
dizable auto update |:|

Fig. 2: ConSol*CM Process Designer - Start Node Properties

Properties:

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

® name
Technical object name.
® |abel
Localized name which will be displayed on the GUI.
® history visibility
See section history visibility.
® disable auto update
See section disable auto update.

47

48 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

4.3 Workflow Components: END Nodes

* Workflow Components: END Nodes
®* Properties of an End Node

A workflow in ConSol*CM can have one or more END nodes.

4
i Re-activate ticket
Work on ticket
OTicket on hold
4
Put ticket on hold
Date has been reached L
;) . (>}
End positive End negative
4 Close ticket without

Close ticket with
solution

solution

END (positive) End (negatiwvej

® ®

Fig. 1: ConSol*CM Process Designer - End Nodes

An end node represents the closing of the ticket, i.e. when a ticket is passed to an end node it is closed in a
technical sense. No engineer can edit the ticket anymore. The ticket can be re-opened by an administrator
using the Ticket Administration in the Admin-Tool, please see the respective section in the ConSol*CM
Administrator Manual for detailed information.

However, assuming engineers have the required access permissions, they can still read the ticket. This is an
important basis for the use of all ConSol*CM tickets of a system as knowledge base.

The passing of the ticket to the end node can be a manual or an automatic action. In the figure above, the
end nodes are automatic nodes, i.e. the ticket passes to this node when the previous activity has been
performed.

As a minimum a workflow has to contain one end node, because there has to be a way to close the ticket.

You might want to create more than one end node. This can be helpful when you create reports, e.g. to
distinguish between positive and negative endings.

An end node might have a script, i.e. before the ticket is closed, a script can be executed.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 49

@ Best Practices:

Sometimes, it might be required to set a ticket to closed, completed, or done from an engineer's
point of view, i.e. to set a ticket to a preliminary END. After a while, if there are no more questions
or remarks from the customer, the ticket should be closed automatically. You can achieve this by
setting a time trigger to an end activity and letting the ticket go to the end node automatically after
the defined time (see following figure).

Re-actiwvate ticket

Close ticket without

Close ticket with solution

solution

Fig. 2: ConSol*CM Process Designer - End Nodes Reached via Time Trigger

4.3.1 Properties of an End Node

: Properties I x
name End_negative [
label End (negative) [
description The ticket is dosed. There is no solution! [
end node type Automatc &
script [j
history visibility defqult -
dizable auto update

Fig. 3: ConSol*CM Process Designer - End Node Properties

50 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Properties:

® name
Technical object name.
* |abel
Localized name which will be displayed on the GUI.
® description
Description which is displayed as mouse-over text.
®* end node type
Automatic/Manual.
® script
Here, a script which should be executed when the ticket enters the end node, i.e. before the ticket is
closed, can be edited.
® history visibility
See section history visibility.
® disable auto update
See section disable auto update.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 51

4.4 Workflow Components: Scopes

* Workflow Components: Scopes
® |ntroduction to Scopes
® Defining a New Scope
® Properties of a Scope
® Scopes and Views

4.4.1 Introduction to Scopes

When a ticket passes through a process there are several positions it has to pass, all in a pre-defined order.
For example, in a service desk environment, the ticket comes in as new ticket, then it has to be pre-qualified
(in our example: are there any SLAs which have to be taken into consideration, is it a VIP customer?).
Subsequently, the engineer can work on the ticket and might put it on hold for a while. Then the ticket should
be closed, either as positive, with solution or negative, without solution. Those major steps of the process
are represented as scopes in ConSol*CM workflows. See the following figure for an example workflow.

52 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Set parameters

n Date has been reached
Re-activate ticket

Put ticket on hold

Ticket in progress
Re-activate ticket

Close ticket with Close ticket without
golution
solution @

®© ®©

Fig. 1: ConSol*CM Process Designer - Workflow with Scopes

Within each process step, there can be one or more activities, e.g. during pre-qualification, first the VIP
customer check is performed, then the SLA is checked. Those activities are described in detail in the section
Activities. Here, only scopes are explained.

A scope can be part of another scope or - seen from the opposite point of view - a scope can contain
sub-scopes.

A scope can have various types of triggers, e.g. a mail trigger fires whenever an e-mail to a ticket, which is
currently in the scope, has been received. Please see sections Mail Triggers, Time Triggers, and Business
Event Triggers for detalils.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 53

4.4.2 Defining a New Scope

In order to define a new scope, i.e. to add a new scope to the workflow, grab the scope icon in the palette
and drag-and-drop it to the workflow at the position where you would like to locate it. Activate it with a
double-click. Then you can add new activities or other elements or drag existing activities/elements into the
scope. When you connect elements by drawing arrows, the entry and exit points of a scope are defined
automatically.

54 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

o

Date has been reached
)
Inform team lead

o

Confirmed: e-mail

Ticket in progress m

read!

[

Close ticket with
solution

)

m Date has been reached
0
Inform team lead

Ticket in progress Re-activate ticket

Confirmed: e-mail
read!

Close ticket with
solution

(7]
L)

)

Fig. 2: ConSol*CM Process Designer - Automatically Generated Exit and Entry Points in Scopes

When you have defined/added the new scope you can define the scope's properties, see next section.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

4.4.3 Properties of a Scope

: Properties o =
= Properties

name Work_in_progress |:|
label Work in progress |:|
sort index 7 [
sCope icon |:|

Fig. 3: ConSol*CM Process Designer - Scope Properties
The following properties can be defined for a scope:

® name
The technical object name.

* l|abel
The localized name which will be displayed in the Web Client GUI.

® sortindex
Defines the position of tickets of this scope in a view (in case the view comprises more than one
scope).

® scopeicon
The icon which is displayed as scope icon in the Web Client GUI (see following figure). Click into the
blue area to pick one of the ConSol*CM standard icons or use the file browser (...) to load an icon
from the file system.

Ticket
Printer does not work Scope
Scope — Ml serviceesk name
icon 100700

Assigned to ServiceDesk, Susan | Open since 2/17/14 1:.06 PM
high
no
Germany

L

Fig. 4: ConSol*CM/Web Client - Scope Icon

» Attention:

Please keep in mind that the icon is merged with the ticket color. So (in case you would like
to upload your own icons) transparent images should be used for ticket icons. Otherwise,
the background color might be lost or only be seen in a small border around the icon.

55

56 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

4.4.4 Scopes and Views

Views, i.e. the selection criteria for the ticket list(s), are defined based on scopes. For a detailed explanation
of views and view definition, please refer to the respective section in the ConSol*CM Administrator Manual.

In the present context, i.e. when you define scopes in the workflow, it is important to keep in mind which
views might be required later on. For example, the mechanism of new, active, and pending tickets is based
entirely on the scope and view definition:

®* View: New

All new tickets in the scope new.
® View: Active

All active tickets, i.e. tickets which are not in a scope on hold, resubmission, or the like.
* View: Pending

All tickets which are in a scope on hold, resubmission, or the like.

That means, whenever a view is required to display only a certain sort of tickets, a scope has to be defined.

» Attention:
We strongly recommend not to define views which contain closed tickets!

The number of closed tickets will grow considerably during work with the application. Therefore, the
view of closed tickets would always reach the maximum number of tickets allowed for a view
(which can be defined using a system property). This can have negative influence on the GUI
performance and in most cases the desired tickets will not even be among the first 50 or 100
tickets.

Conclusion: A view of closed tickets does not help and might decrease the speed of the system for
the engineers. Only in test environments, a view for closed tickets might be an option.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 57

4.5 Workflow Components: Activities

* Workflow Components: Activities

® [Introduction to Activities

® Properties of an Activity

® Process Logic of Activities

® Examples for Activities
® Example 1: Precondition for Displaying Activity "Inform team lead"
® Example 2: Send an E-Mail to the Main Contact When a Ticket Has Been Opened
® Example 3: Assign the Ticket to the Current Engineer

4.5.1 Introduction to Activities

An activity represents an action in a workflow. An activity is located within a scope and is of one of the
following types:

® manual
® automatic

A manual activity has to be performed by a manual action of the engineer using the Web Client GUI. The
activity is displayed as Workflow activity in the Web Client (provided at least one of the roles of the engineer
has the Execute permission (please refer to the ConSol*CM Administrator Manual, section Role
Administration, for a detailed explanation). In the Process Designer, the activity is marked by the
hand/manualicon ¥ .

58 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Check SLA VIP customer! Set

owverlayl!

Date has been reached

Work on ticket .
. Put ticket on
Re-activate ticket

Fig. 1: ConSol*CM Process Designer - Manual Activity in Workflow

ConSolt J
w Logged in: Susan ServiceDesk | #| 9

| Overview | Create ticket ‘ Create customer |

[View: ServiceDeskActive

o]

P dons v

N ServiceDesk | Pre-gualify ticket
Eriierdoes notwork 100700 assigned to ServiceDesk, Susan | Open since 2/17/14 1:08 PM
Customer. 777 - Luke Skywalker Priority high
100700 Ssignedto: SenviceDesk, Susan Ask for feedback no Workspace is empty
Country Germany All your unsaved tasks are
tick automatically listed in this
Wiorky) workspace.
Unassigned tickets (0) [CJEIE customers | dd | Hide
Main customer B
|| MrLuke Skywalker ~ N —
luke@consolde 777 “! | Favorites are empty
Office 4711 w| | Drag tickets, contacts, companies
Development Dpt or searches into this space to
save them as favorites.
Engineers | Add | Hide
No relations | Add | Hide
[JEIE Histery | Comment | E-Mail | Attachment | Time booking | Hide

Display communication + Sorting latest first

‘ Add comment, e-mail or attachment ‘

[~]

17.02.14 13.06 #1 created by Susan ServiceDesk | Action
default class
please fix, thanks

[o}

Fig. 2: ConSol*CM/Web Client - Manual Activity

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 59

An automatic activity is performed automatically by the system and is not displayed in the Web Client. In the
Process Designer, an automatic activity is not marked by any special icon.

VIPF customer! Set
overlayl!

Put ticket on hold

(7]

Fig. 3: ConSol*CM Process Designer - Automatic Activities

4.5.2 Properties of an Activity

In order to display and edit the properties of an activity, mark the activity in the Process Designer.

Fig. 4: ConSol*CM Process Designer - Activity

60 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

The Properties Editor will be opened for this activity.

: Properties o =
—|Properties

name Inform_Team_Lead o
label Inform team lead [
description In case of VIP customer: Inform team lead! D
sort index 10 D
overlay D
precondition Scoript iz provided D
script Script iz provided D
activity type [Manual =
higtery visibility [default =
dizable auto update

Fig. 5: ConSol*CM Process Designer - Properties of an Activity
An activity can have the following properties:

®* name
Mandatory, technical object name.
* label

Optional (if not set, the technical name is used). Localized name which will be displayed in the Web
Client. The language which is configured in the web browser is used.
® description
Optional. Will be displayed as mouse-over in the Web Client.
® sortindex
Defines the order of the activities in the Web Client.
® overlay
Optional. Click into the orange space to load standard ConSol*CM overlay icons or use the file
browser (...) to upload another icon from the file system.
® overlay range
Only displayed when an overlay has been set:
® activity
The overlay is attached only as long as the ticket stands behind the activity. As soon as the
next activity is executed, the overlay is deleted from the ticket icon.
® scope
The overlay is deleted when the ticket leaves the scope.
® process
Once the overlay has been attached to the ticket icon, it stays there for the rest of the process.
® next overlay
The overlay is attached to the ticket icon as long as no new overlay appears. In that case, only
the new one is attached, the old one is deleted.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

® precondition

Optional. A script can be entered which is executed when the activity should be offered in the Web
Client GUI. The script has to return true or false. If a precondition has been defined for an activity, the
activity is marked by the exclamation mark/precondition icon 0 (see figure above).
® Return value is true.
The activity is displayed. If it is a manual activity it can be selected/performed by the engineer
in the Web Client GUI.
® Return value is false.
The activity is not displayed in the Web Client GUI

» Attention:

CM version 6.9 and higher:

When you work with data object group fields, i.e. with data fields that contain customer data,
please keep in mind that it might be required to consider the data models of different
customer groups in case a workflow is used for queues which have been assigned to more
than one customer group!

script

Optional. A script can be defined which is executed when the ticket passes through the activity.
activity type

Mandatory. Either automatic or manual has to be selected. In case it is a manual activity, the activity
is marked with the hand/manualicon ¥ in the Process Designer GUI.

history visibility

See section history visibility.

disable auto update

See section disable auto update.

4.5.3 Process Logic of Activities

This is the process logic of activities:

1.

When a ticket has passed through an activity it always waits behind this activity (and not before the
next onel).

When a ticket has passed through an activity it checks if there is an automatic activity. If yes, the
ticket passes through this automatic activity as well.

The ticket passes automatically through (automatic) activities as long as there are new automatic
activities. It comes to a halt as soon as there is/are one or more manual activities where engineer
interaction is required.

. If one or more of the following manual activities have a precondition script, this script is executed in

order to decide if the activity has to be displayed in the Web Client GUI or not.

If the engineer selects the activity in the Web Client GUI, the script of the activity is executed.

If there is a postActivityScript, this script is executed immediately after the execution of the activity
script.

61

62 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

7. The ticket waits behind the manual activity. If the following activity is located in a new scope, the ticket
will not enter the new scope. It always waits behind the old activity and not before the new one!

% Attention:

A ticket always waits behind the last activity which has been executed and not before the new one!!

4.5.4 Examples for Activities

Example 1: Precondition for Displaying Activity "Inform team lead"

In case the ticket has been opened by a VIP contact, i.e. a contact where the boolean field vip is true, the
team lead should be informed. If it is no VIP, the activity should not be offered. The custom field vip which is
part of the customer data model is checked for this purpose.

(») (»)
Work in progress

o

Work on ticket

i—0

Inform team lead

Fig. 6: ConSol*CM Process Designer - Workflow Activities (One with Precondition Script)

Precondition script: Workflow used only for queues of one customer group

/1 Get the nmain contact of the ticket. The unit object (can be a customer or a conpany) is
provi ded;
/1 here it has to be a custoner, i.e. a contact:

Unit contact = ticket.get Mai nContact ()

/'l Check the customfield "vip" of the nain contact. (see next inmage)
/1 1f it is set to true, return true, i.e. the condition is TRUE.
/!l Else return false, i.e. the condition is FALSE:

if (contact.get("vip")) {
return true

} else {
return fal se

}

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

| & Userattibutes

Customer groups | Customer data model | Data object actions | Customer roles I Data object relations I Engineer functions I Projects|

Customer data models Data object group fields
B.‘.— BasicMode! ol Filter: |
: E| « company
Mame T
. gsmmer pnone.s sn‘c:?fsmng ~
- e phone4 short string
_— L phone_label short string
=) DirCustCompany 3 phonetypel enum
P = DirCustCompanyData phonetype2 enum
E|--D|:rCu5tCustomer phonetype3 enum
i< DirCustCustomerData phonetypes enum —
=] as ResellerModel preparer boolean
ResellerCompany — —— g
- ResellerCompanyData
= ResellerCompany_ServiceContractData 1|
2 D 11 T 10 e e =
AERBCTTE L1

= [CM_Administration,WorkfAow_Admin]

Fig. 7: ConSol*CM Admin-Tool - Data Object Group Field "vip" (CM Version 6.9)

Ticket

-+ Printer does not work

ServiceDesk | Pre-gualify ticket

Unass=igned | Open since 31914 12:40 PM

Priority low Module misc
Ask for feedback no

[TI[5I[E customers
Main
Mrs Mia Skydiver -
Starship Operator Dr.
miai@localhost
Office 123

Cominnnrs

100243

Accept | Edit | Clone | Print | Display «

Workflow activities

Add | Hide

Add | Widiea

Fig. 8: ConSol*CM/Web Client - Precondition: Return Value TRUE

Ticket

& Printer does not work

ServiceDesk | Pre-gualify ticket

Unassigned | Open since 319014 12:40 PM

Priority low Module misc
Ask for feedback no

[TI[FI[E customers
Main
Mr= Mia Skydiver -
Starship Operator Dr.
miai@localhost

Office 123

100243

Engineers

Accept | Edit | Clone | Print | Display + Workflow activities

Waork on ticket

orkspace

Add | Hide

m

Add | Hide

Fig. 9: ConSol*CM/Web Client - Precondition: Return Value FALSE

63

64 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Example 2: Send an E-Mail to the Main Contact When a Ticket Has Been
Opened

When a ticket has been opened, an e-mail should be sent to the main contact of the ticket.

START

Service Desk ©

Pre-gqualify ticket
~ VIF customer?
v/
Hew ticket
| o
! i Check SLA VIP customer! Set
Hew IT ticket Send notice for ec. g
receipt overlayl!

(>} (]
N S
[] Ticket on hold

Fig. 10: ConSol*CM Process Designer - Automatic Activity Where Receipt Note Is Sent

Script for automatic activity where receipt note is sent, variant 1

/1 Get the main contact of the ticket:
def contact = ticket.getMai nCont act ()

/1l Get the value of the customfield "email" of the main contact:
def contact_e = contact.get("email")

/] Use as text the e-mmil tenplate with name "recei pt_notice_Servi ceDesk".
/l Can be located in the Tenpl ate Designer or in the Adm n-Toool .

/1 Usually e-mail tenplates are stored in the Tenpl ate Designer:

def text = workfl owApi.renderTenpl ate("recei pt_notice_Servi ceDesk")

/]l Get the reply-to address for the e-mail.
/1l This is stored in the system property "cmweb-server-adapter”,"mail.reply.to":
def replyto = configurationService. getVal ue("cmweb-server-adapter","mail.reply.to")

/1 Build the string for the ticket subject.

/1 Keep in mind that the regul ar expression which defines the ticket identifier has to be in
thi s subject.

/1 Otherwi se, an e-mail cannot be assigned to the correct ticket.

def subj = "Your request has been received: ticket (" + ticket.getld() + ")"

//Send out the e-mail
wor kf | owApi . sendEnai | (cont act _e, subj,text,replyto, null)

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Script for automatic activity where receipt note is sent, variant 2
/1 all lines of code identical to variant 1 except for the last |ine:

new Mail (). set Subject(subj).setTo(contact_e).setReplyTo(replyto).setText(text
).setTicket Attachnments(null).send()

Example 3: Assign the Ticket to the Current Engineer

The ticket should be assigned to the engineer who executes the activity New IT ticket.

START D
Service Desk @
Pre-gqualif
(p]
A
Hew ticket
(>}
(w)
4 .
New IT ticket Send notice for
receipt
IOL
0—

Fig. 11: ConSol*CM Process Designer - Workflow Activity Where Engineer Should Be Assigned

Ticket Edit | Clone | Print | Display + Workflow activities

. . Work on ticket
 Question about CM/Office .

Inform team lead
100245

\Workspace

L

Fig. 12: ConSol*CM/Web Client - Ticket Passed through Activity Where Engineer Was Assigned

Script for assigning ticket to current engineer

/] Cet the engineer who is executing the activity:
def curr_eng = workfl owApi . get Current Engi neer ()

/1 Assign the ticket to the current engineer
ticket. set Engi neer (curr_eng)

65

66

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Attention:
Make sure that you always use the correct engineer object!

The current engineer is the engineer who is logged in, who is executing the current activity. You
can get the object by using the following method:

def curr_eng = workfl owApi . get Current Engi neer ()

The ticket engineer is the person who is (at this point of time) the ticket owner and responsible for
the ticket. You can get the object by using the following method:

def tic_eng = ticket. get Engi neer()

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 67

4.6 Workflow Components: Decision Nodes

* Workflow Components: Decision Nodes
® [Introduction to Decision Nodes
® Properties of a Decision Node
® Example for a Decision Node

4.6.1 Introduction to Decision Nodes

A decision node is a node which has one or more entry points and exactly two exit points: true and false. A
decision node always has to have a script which has to return either true or false.

The ticket enters the decision node, then the script is executed and - depending on the result (true or false) -
the ticket leaves the node via the respective exit point.

Pre—qualify ticket

VIP customer?

] 9
(>}
Check SLA VIP customer! 3et
overlayl!
C) 5
L [
=0

Fig. 1: ConSol*CM Process Designer - Decision Node

4.6.2 Properties of a Decision Node
A decision node has the following properties:

®* name
Mandatory, the technical object name.
* |abel
Optional, the localized name which is displayed in the Web Client GUI.
® condition
Mandatory, a script which returns true or false has to be provided.
® history visibility
See section history visibility.

68 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

¢ disable auto update
See section disable auto update.

: Properties I =
= Properties

name VIP _customer ()
label VIP customer? ()
condition Script iz provided D
hiztory visibility |default =
dizsable auto update |:|

Fig. 2: ConSol*CM Process Designer - Decision Node: Properties

4.6.3 Example for a Decision Node

In the following example, the system should automatically check if the customer (main contact of the ticket)
is a VIP customer. If yes, the ticket should be marked with the VIP overlay (in the example a yellow star).

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

69

1. A custom field of type boolean has to be defined in the customer data model to mark a customer as
VIP (yes/no). Please refer to the ConSol*CM Administrator Manual 6.8, section Custom Field

Administration.
Groups Fields
Filter: | ||.-'-\II queues | Filter: |
Customer data | Activity Form data
Mame Data type
MName phone4 short string o
company phone_label short string
e ==
phonetype2 enum
phonetype3 enum
phonetype4 enum
porter_login short string
porter_password short string
preparer boolean L
boolean_list_member boolean
it
boolean =
personal_number string 7
salutation enum

[e)[c][](o]

boolean

B

Assigned annotations

N Val Annotati

ame ale LB e e Mame Value Annotation group
contact-template-contact-ticket-page |customer-ticketpage-template |contact-templates sition |12.2 |Ia ut
contact-template-default customer-standard-template [contact-templates PO z ¥
contact-template-dragged contact-dragged-template contact-templates

contact-template-email

contact-email-template

contact-templates

contact-template-quick-search

search-customer-template

contact-templates

Fig. 3: ConSol*CM Admin-Tool - Custom Field "VIP" in Customer/Contact Data (CM Version 6.8)

[TI[5I[§ Customers

Main customer

Space Department

[1ar [=] [Luke [Stoywalkcer
| Starship Operator [Pref. Dr.
| luke@consol de | 77
Fhone | Office [=] [«711

| Choose Cne [=] |

| Choose Cne [=] |

| Choose One El |

[~

Domain | Choose One

Manager
[[] Functional decider

| luke

|porter

|_ Create | | Cancel |

ConSolf GmbH «

Company ConSol* GmbH
My Favourite Company
Franziskanerstr. 38
81343 Minchen
No comment

I

Budget responzible
[Preparer

Fig. 4: ConSol*CM/Web Client - Custom Field "VIP" for Customer/Contact Data

Add

70 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

2. In the script of the decision node, it has to be checked if the customer is a VIP (return value: true) or
not (return value: false).

Example from CM version 6.8

/1 Get the main contact of the ticket. The unit object (can be a custonmer or a conpany) is
provi ded;
/1 here it has to be a custoner, i.e. a contact:

Unit contact = ticket.getMai nContact ()

/1 Check the customfield "VIP' of the nain contact. (see next inage)
/1 1f it is set to true, return true, i.e. the condition is TRUE
/!l Else return false, i.e. the condition is FALSE:

if (contact.get("VIP")) {
return true

} else {
return fal se

3. When aticket has passed automatically through the decision node and the following automatic activity
where the VIP overlay is added, the ticket icon in the Web Client is marked with the overlay, see
following figure.

Ticket "M 5-Office does not work™ created successfully.
Ticket

- M5-Office does not work
H ServiceDesk | Pre-gualify ticket
100722 Unassigned | Open since 2M18M4 5:26 PM
normal
no
Germany
normal

Cuetmare

Fig. 5: ConSol*CM/Web Client - Ticket Icon with VIP Overlay

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 71

4.7 ConSol*CM Process Designer Manual - Adornments
(Triggers and ACFs)

4.7.1 Adornments (Triggers and ACFs)

The ConSol*CM workflow engine can react to several kinds of events. This is controlled by triggers. ACFs
offer dynamic forms.

Adornment type Explanation

Time Triggers Control the time which has elapsed since the ticket
has entered a scope or an activity, see section Tim
e Triggers.

Mail Triggers Control if an e-mail has been received by a ticket in

the scope, see section Mail Triggers.

Business Event Triggers Control events like the change of the engineer or
adding of a comment. See section Business Event
Triggers.

ACF Using Activity Control Forms (ACFs) you can

control the data that have to be entered by the user
in a certain step of the process, see section Activity
Control Forms (ACFs).

72 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

4.7.2 Time Triggers

® Time Triggers

® |ntroduction to Time Triggers

® Adding a Time Trigger to a Workflow
® Adding a Time Trigger to a Scope
® Adding a Time Trigger to an Activity

® Properties of a Time Trigger

® Business Logic and Initialization of a Time Trigger

® Examples for Time Triggers

® Scripting with Time Triggers
®* Example 1: Set the Due Time of a Time Trigger Depending on the Queue
® Example 2: Calculate an Escalation as Warning 2 Days before Desired End Date

Introduction to Time Triggers

A workflow can contain several time triggers.

Fig. 1: ConSol*CM Process Designer - Time Trigger

A time trigger is a mechanism which reacts when a certain period of time has elapsed. This can be required,
for example, in the following situations:

® Use case 1:
An engineer wants to put a ticket on hold for a defined time, because he/she knows that the customer
will not be available until then.

® Usecase 2:
The system should automatically control the escalation time, i.e. when a ticket has come in and has
not been taken care of, there should be an alert (this can be an overlay at the ticket icon, an e-mail to
the team lead, or other actions).

® Usecase 3:
A ticket has been solved and the engineer closes it. However, this should be a preliminary end and
the ticket should be closed technically after a defined period of time.

Those use cases can be implemented using time triggers.

A time trigger can be configured to use a business calendar, i.e. to take only those times into consideration
which are defined as working hours.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 73

A time trigger can be attached to ...

® ascope
Then it controls all tickets which are currently in the scope.
® an activity
Then it controls only the tickets which have just entered this activity.

A time trigger has to be of one of two types:

* manual
* with a defined period of time

@ Information:

You as a workflow developer have to implement everything that should happen as a consequence
when a time trigger has fired! There are no automatic actions. All the time trigger does, is to give a
signal time elapsed - just like an alarm clock.

Adding a Time Trigger to a Workflow

Adding a Time Trigger to a Scope

Grab the time trigger icon in the palette and drop it into the desired scope. It is automatically attached to the
top of the scope. You can modify the position afterwards (move it to the left or right to change the order of
triggers or just to improve the layout).

A time trigger, which has been attached to a scope, cannot be moved to another scope or activity. In case
you would like to attach a time trigger to another scope/activity, remove the one you have defined and create
a new one for the correct scope/activity.

To configure the properties of the trigger, select it in the editing panel and set the correct values in the
Properties Editor. See section Properties of a Time Trigger.

You can draw connections from the trigger to put activities or decision nodes behind it. The first step which is
executed after a time trigger always has to be an automatic activity!

Adding a Time Trigger to an Activity

Grab the time trigger icon in the palette and drop it into the desired activity. It will be attached to the corner of
the activity.

A time trigger which has been attached to an activity cannot be moved to another scope or activity. In case
you would like to attach a time to another scope/activity, remove the one you have defined and create a new
one for the correct scope/activity.

To configure the properties of the trigger, select it in the editing panel and set the correct values in the
Properties Editor. See section Properties of a Time Trigger.

74 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

You can draw connections from the trigger to put activities or decision nodes behind it. The first step which is
executed after a time trigger always has to be an automatic activity!

Properties of a Time Trigger

A time trigger has the following properties:

® name
Mandatory. The technical name of the trigger. It is set automatically but can be changed manually.
®* minutes/hours/days
Here you can enter the time interval after which the trigger should fire. The display mode always
refers to a 24-hours-day, i.e. when you have entered 30 hours as reaction time and you re-open the
workflow, there will be 1 day, 6 hours.
® use calendar
Optional. Mark this check box when the business calendar should be taken into consideration when
the time interval is calculated.

~ Attention:

Please keep in mind that there are three steps which are necessary to make sure time
intervals are calculated using a business calendar:
1. Define a business calendar (see ConSol*CM Administrator Manual, section Business
Calendars).
2. Assign the correct business calendar to a queue (see ConSol*CM Administrator
Manual, section Queue Administration).
3. Mark the check box use calendar for each trigger which should work with the
calendar.

@ Principle of the use of a business calendar:

1 day means 24 hrs of absolute time, it has nothing to do with the use of a calendar. The
calendar only plays a role when the time trigger is activated, then the 24 hrs, i.e. 86400000
milliseconds, will be taken as business calendar input (if the calendar is enabled).

Example:

When we have as trigger time 1 day = 24 hrs without calendar, the 24 hrs are calculated like
regular time, so the escalation will fire one day later at the same time.

In contrast: When we use a calendar (with, for example, 7 work hrs per work day), the 24 hrs
will be split-up according to the calendar, resulting in the firing event more than 3 days later
(24 hrs =3 x 7 hrs + 3 hrs).

See also section Working with Calendars and Times.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 75

®* repeatable
Optional. Mark this check box to make sure the trigger can fire more than once for one ticket. If a
trigger is repeatable, it is reset immediately after it has fired, i.e. the time count starts again.

@ Info for experts:

The script on timer start is executed again. The first firing event is initialized by the
(technical) user admin, all following firing events are initiated by the Job Executor.

® script after timer
Optional. A script can be defined which is executed when the time interval which is controlled by the
trigger has elapsed, i.e. when the time trigger fires.

® script on timer start
Optional. A script can be defined when the time trigger starts to measure time, i.e. when the ticket has
entered the scope/activity to which the trigger is attached.

® activate manually
Optional, only for time triggers at activities. Mark this check box when the user (the engineer) should
select the time when the trigger should fire. For the user, a date-picker (web calendar) is displayed.

® retry interval
The time in seconds after which the trigger execution should be executed again in case a script has
run with an error. The time can be configured in the Admin-Tool (property
jobExecutor.timerRetrylnterval.seconds).

: Properties Ik =
—| Properties

name TimeTrigger2 []
minutes a

hours 4

days 0

use calendar
repeatable
script after timer

@)@

script on timer start
retry interval default value

Fig. 2: ConSol*CM Process Designer - Properties of a Time Trigger

Business Logic and Initialization of a Time Trigger

The time measuring of a trigger is started (i.e. the trigger is initialized) when the ticket enters the
scope/activity. It stops (i.e. the trigger fires) when the defined period of time which has been set as fixed
value (minutes/hours/days) or the manually defined time has elapsed.

When you as a workflow developer would like to initialize a trigger using other values, this has to be done
using scripts. Here, short examples will be provided, please see section Working with Calendars and Times
for a detailed explanation of programming workflow trigger times. In those chapters, the code examples are
provided, too.

76 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

* Example 1:
The reaction time for a ticket should be calculated based on the priority. In the script on timer start,
the different reaction times are used (a good way to implement this, would be to use
customer-specific system properties) and the reaction time is calculated. Then the trigger is initialized,
i.e. the time interval is set.

®* Example 2:
When an e-mail to a ticket has come in and after three hours, no engineer has read the e-mail and
has taken care of the ticket, an alert should be triggered. To implement this, an incoming e-mail (see
section Mail Triggers) has an adjacent automatic activity which re-initializes a time trigger with 3
hours.

A time trigger can also be deactivated. In Example 2, this would be required to prevent the time trigger from
firing initially, because it should not be initialized before any e-mail comes in.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 77

Examples for Time Triggers
The implementations for the use cases mentioned above (see Introduction to Time Triggers) would be:

® Usecase 1:

Put a manual time trigger to the activity Put ticket on hold. The engineer can select the desired end
date by using the date picker in the Web Client. Usually then the ticket is led back to the active tickets.

Ticket on hold

T

Be-activate ticket

Work on ticket

Date has been reached L

Fig. 3: ConSol*CM Process Designer - Use Case 1: Workflow

: Properties b =
|- Properties

name __onHoldTrigger 1]
uze calendar |:|

repeatable]

script after timer (]
activate manualy

retry interval default value

Fig. 4: ConSol*CM Process Designer - Use Case 1: Properties Editor for Time Trigger
ConSol -+ e

» vl \e
J. LY Logged in: Susan ServiceDesk | *

| | Sovan s ¢ M\’

View: SenviceDeskActive Ticket Accept | Edit | Clone | Print | Display w Workflow activities
Printer does not work FrimEoieTie
SenviceDesk | Senvice Desk Close ticket with solution
Unassigned | Open since 2/20/14 3:11 PM Close ticket without solution

Customers

Workgroup tickets (0}

. Workspace
Main customer
Unassigned tickets (1) Mr -
1 Set the eI |
Seledt the required escalation date:
220ns |75 [122 ool
Eng Add | Hide
No teremons—| | @ February 2014 ° acq | Hige || Favorites
History Sun Mon Tue Wed Thu Fri Sat achment Time booking Hide

Display commur

Add comment, ¢

Add | Hide

1

2 3 4 5 6 7 8
1 minute ago #1 creatg 9 10 11 12 13 14 15
de’ {
sraultel 17| 18 19 20|21 2
Please fix
24 25 26 27 28

Fig. 5: ConSol*CM/Web Client - Use Case 1: Date Picker

78

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

® Use case 2:
Put a time trigger on the scope where the new tickets come in. Define the time for the trigger (this
might depend on SLASs), e.g. four hours. Put a control behind the trigger if an engineer has taken care
of the ticket or not. If not, an e-mail is sent to the team lead.

P
)

Engineer set?

(])

Take action' No ok - no action
enginesr set!

()

Fig. 6: CM Process Designer - Use Case 2: Workflow

: Properties I =
- Properties

name EscalationTrigger_1 D
minutes
hours

davs

use calendar

OE =+

repeatable

script after timer
script on timer start
retry interval default value

)|

Fig. 7: ConSol*CM Process Designer - Use Case 2: Properties Editor for Time Trigger

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 79

heck invoice # 998877 &1

ustomer: Skywalkerl ea
3114 1:15 PM

&» Sell a printer to each special end]
{3 customer
100260 Cqstnmer: SkywalkerLuke
misc
5/5M4 3:07 PM

. Customer guestion regarding £
" product documentation
Customer: Skywalkerl ea
100251 CjiPhone
2814 2230 PM

Application ABC not available £]

Customer: Skywalkerl ea

Web Client
100244 - 1914 1:10 PM

il]

Call back Customer from New &

York
100243 Sﬂl}l:énmer: Mia Skydiver

3M9M14 1240 PM

Fig. 8: ConSol*CM/Web Client - Use Case 2: Ticket List

® Usecase 3:
Put a time trigger to the activity Close ticket with solution and set a defined period of time for the
trigger, e.g. five days. Behind the trigger there is the end node of the process. For five days, the ticket
can still be edited, after this time, it is closed automatically.

/

™

L

End positive

[
Close ticket with
salution

]

End (positive)

@

. .

Fig. 9: CM Process Designer - Use Case 3: Workflow

80 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

: Properties =
[=| Properties

name escalationTrigger E]
minutes
hours

u'lDDl

days

usecandor @

repeatable |:|

script after timer E]

script an timer start E]
[

activate manualby
retry interval default value

Fig. 10: ConSol*CM Process Designer - Use Case 3: Properties Editor for Time Trigger

Ticket Accept | Edit | Clone | Print | Display + Workflow activities

ClO cannot log in anymore

SeniceDesk | End positive Workspace
6 Unassigned | Open since 2/20/14 3:44 PM

pricrity wery_high

=| Customers Add | Hide

m

Main customer

Mr = Favorites
Luke Skywalker
E-Mail luke@localhost

Engineers Add | Hide
No relations Add | Hide

=| History Comment | E-Mail | Attachment | Time booking | Hide
Display all entries ~+ Sorting latest first

Add comment, e-mail or attachment

1 minute ago #3 changed by Susan ServiceDesk

= Close ticket with solution has been triggered, new Scope is End positive

= Check SLA has been triggered 7l
= New T ticket has been triggered

4 minutes ago #2 changed by Workflow Timer
= Ticket not assigned to engineer - alert! has been friggered
= Engineer set? has been triggered

Fig. 11: ConSol*CM/Web Client - Closed Ticket

Scripting with Time Triggers

The following methods are of major importance when you work with time triggers:

® TimerTrigger.setDueTime(long pDueTime in millisecs)
Sets the time when the trigger should fire. The time recording starts when the trigger enters the scope
or activity where the trigger is attached. So setDueTime() defines the time period in milliseconds from
the entry time to the desired firing event.

* workflowApi.reinitializeTrigger()
(different method signatures)
Starts the time recording for the given trigger again, i.e. re-sets its start time.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

* workflowApi.deactivateTimer()
(different method signatures)

81

Deactivates the given time trigger, i.e. the trigger will never fire until re-initialized.
(There is no method activateTimer(). Use workflowApi.reinitialize Trigger() to re-activate the trigger).

Please see also section Working with Calendars and Times.

Example 1: Set the Due Time of a Time Trigger Depending on the Queue

This script could be used as a script on timer start for a time trigger at a scope. It will initialize the trigger for
an escalation depending on the queue, i.e. if the ticket is in the HelpDesk _1st Level queue there is less

time until the escalation than in the HelpDesk 2nd_Level queue.

Within the scripts scripts on timer start and script after timer, the object timer exists as an implicit initialization
of TimerTrigger. So you can work using triggers without any steps before. However, in an Admin-Tool script

you will have to import the TimerTrigger class or the respective Java package.

The following script could be used in a service desk and help desk environment and placed in the following

TimerTrigger.
START Ti Tri 9
imerTrigger,
Service Desk ©
Pre-gqualify ticket
(»] E-mail received Esealation {11
VIP customer? 6
Hew ticket (] ()
(»]
- (u]
New IT ticket gend notice for
receipt Check SLA VIP customer! Set
overlayl!
O
Lo u
») O
p AP) :

Fig. 12: ConSol*CM Process Designer - TimerTrigger in ServiceDesk Workflow

Example for a script on timer start

def addedEscalMIlis =0
switch (ticket.queue.nane) {
case "Hel pDesk_1st _Level ":
addedEscal M| lis = 12*60*60* 1000L;
br eak;
case "Hel pDesk_2nd_Level ":
addedEscal M| lis = 24*60*60*1000L;
br eak;
case "ServiceDesk":
addedEscal M| lis = 4*60*60* 1000L;

}
trigger. set DueTi ne(addedEscal M1 1is)

82 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

~ Attention:

For this example, it makes sense to use fixed values for the times directly in the script code. In real
life environments you might want to store escalation times and the like in system properties and
retrieve them using the configurationService. That way, an administrator can easily access and edit
the escalation times without any manipulation of the workflow implementation.

In real life, a business calendar might also be used - please see Example 2.

In the server.log file, you can see the time when the trigger is supposed to fire.

Fig. 13: File server.log with Calculated Timer DueTime

56 INFO [w.DefaulcHorkflowEventliscener] Tickec's 100253 cimer defaulc Service,

66 INFO [w.DefaultWorkflowEventlistener] Tickes's 100253 timer defaultSGope/Service DESI/TJ]{ETL\QQEI was activated with escalation Time Fri Mar 28
66 INFO [ket.resource.PropertiesFactory] Loading properties files from vfszip:/usr/loca.
mweb/client/components/ticket/list/filter/FilterSelectionPanel properties with loader chkEL B I i ileProp L\Es[nader@
2,907 INFO [ket.resource.PropertiesFactory] Loading properties files from vEszip:/usr/local/jboss-5.1.0.GA/server/cmas/deploy/cmé.ear/web-client—weba

19:32:42 CET 2014

ner

Start of ticket was 15:32:42 CET ->

:133:03,345 INFO [.engine.exe.event.TimerManager] Removing timer of WorkflowInstance id : 249
33:03,353 INFO [w.DefaultWorkflowEventlistener] Ticket's 100253 timer default Service Desk/TimeTri 1 was deactivated

The same principle could be applied to calculate the escalation time depending on the ticket priority, the VIP
status of a customer, or any other parameter.

Example 2: Calculate an Escalation as Warning 2 Days before Desired End Date

Calculate and set time for TimerTrigger using BusinessCalendar

def now = new Date()
def wunschTermin = ticket.get("hel pdesk_standard", "date_test")
def twoWrkDays = -2*8*60*60*1000L

/1 calcul ate escal ati on date

def escal Date = Busi nessCal endar Uti | . get Busi nessTi me(wunschTerm n, twoWrkDays,
ticket. queue. cal endar)

/1 calculate and set due tinme

trigger.setDueTi ne(escal Date.tinme - now.tine)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 83

4.7.3 Mail Triggers

® Mail Triggers
® |ntroduction to Mail Triggers
® Mail Trigger at a Scope
® Mail Trigger at an Activity
Adding a Mail Trigger to a Workflow

® Adding a Mail Trigger to a Scope

® Adding a Mail Trigger to an Activity
®* Properties of a Mail Trigger
® Examples for Mail Triggers

® Use Case 1: Overlay for Ticket Icon

® Use Case 2: Overlay for Ticket Icon and E-Mail Confirmation by Engineer
® Process Logic with Mail Triggers

Introduction to Mail Triggers

One of the core functionalities of ConSol*CM is its interaction with an e-mail infrastructure. This makes it
possible for the engineer to send manual e-mails and for the system to send automatic e-mails to customers
and to engineers, as required in the respective process step. Obviously, ConSol*CM has also to receive
e-mails. This is done by retrieving e-mails from one or more mailboxes with ConSol*CM-owned addresses.
For a detailed explanation of all interactions between the mail server and ConSol*CM, please refer to the
ConSol*CM Administrator Manual and the ConSol*CM Operations Manual. Here, only the workflow
interactions are explained.

2

Fig. 1: ConSol*CM Process Designer - Mail Trigger

Mail Trigger at a Scope

When an e-mail is received which belongs to an existing and active (open) ticket, it might be required to
register this action and to perform specific actions subsequently. This can be achieved using one or more
mail triggers within a workflow.

84 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

", Attention:

Please keep in mind that (in the default configuration, i.e. without modification of the Admin-Tool
script AppendToTicket.groovy) the only automatic action, which is performed by ConSol*CM after
having received an e-mail in a specific mailbox, is to attach this e-mail to the ticket with the
matching ticket tag in the subject, e.g. Ticket (<TicketNumber>). See also ConSol*CM
Administrator Manual section Scripts of Type E-Mail.

All other actions, which should be executed when an e-mail has been received, have to be
programmed manually in the workflow (and/or in Admin-Tool scripts)!

Examples for the use of malil triggers are:

When an e-mail has been received ...

® the engineer of the ticket (the ticket owner) should also get an e-mail as natification.

® the ticket icon (in the Web Client) should be marked by an overlay.

® the ticket should be transferred to an activity where the engineer has to confirm that he/she has read
the e-mail.

® the sender and the subject of the e-mail are checked and parsed. If the e-mail is a confirmation or a
denial in an approver process, the ticket is managed according to the defined rules and activities in
the workflow. That way, the approval can be performed using the e-mail only, no login of the approver
in the Web Client is required.

Mail Trigger at an Activity

When a mail trigger is attached to an activity, this activity is only executed when an e-mail is received.

Fig. 2: ConSol*CM Process Designer - Mail Trigger at Activity

Adding a Mail Trigger to a Workflow

Adding a Mail Trigger to a Scope

Grab the mail trigger icon in the palette and drop it into the desired scope. It is automatically attached to the
top of the scope. You can modify the position afterwards (move it to the left or right in order to improve the
layout). Only one mail trigger can be used per scope.

A mail trigger which has been attached to a scope cannot be moved to another scope. In case you would
like to attach a mail trigger to another scope, remove the one you have defined and create a new one for the
correct scope.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 85

You can draw connections from the trigger to put activities or decision nodes behind it. The first step which is
executed after a mail trigger always has to be an automatic activity!

Adding a Mail Trigger to an Activity

In the very rare case that you have to attach a mail trigger to an activity (we do not recommend this!), grab
the mail trigger icon in the palette and drop it into the desired activity. It will be attached to the corner of the
activity.

A mail trigger which has been attached to an activity cannot be moved to another scope or activity. In case
you would like to attach a mail trigger to another scope/activity, remove the one you have defined and create
a new one for the correct scope/activity.

Properties of a Mail Trigger

A mail trigger does not have any properties.

Examples for Mail Triggers

Use Case 1: Overlay for Ticket Icon

When an e-mail has been received for a ticket which is currently in the scope, the ticket icon in the Web
Client GUI should be marked with the overlay mail.

The mail trigger is attached to the scope and the overlay is attached to the adjacent automatic activity. The
overlay range is activity.

That way, the ticket is marked with the overlay when the e-mail has come in. As soon as an engineer has
moved the ticket to another activity, the overlay disappears.

Please note that the ticket does not leave its context. All that happens is the attachment of the overlay to the
ticket icon. Then the ticket returns to its original position in the workflow. We call this an interrupt. Please
read the section Process Logic for a detailed explanation.

s

E-mail receiwved

(=)

Fig. 3: ConSol*CM Process Designer - Use Case 1: Scope with Mail Trigger

86 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Ticket

2 Time Booking System unavailable

u ServiceDesk | Service Desk
100740 |nassigned | Open since 2/24/14 &:49 AM
high misc
no
Germany

Fig. 4: ConSol*CM/Web Client - Use Case 1: Ticket with Overlay Icon

Use Case 2: Overlay for Ticket Icon and E-Mail Confirmation by Engineer

When an e-mail has been received for a ticket which is currently in the scope, the ticket icon in the Web
Client GUI should be marked with the overlay mail. Additionally, the ticket should be transferred to a position
where it waits until the engineer has confirmed that he/she has read the e-mail.

The mail trigger is attached to the scope and the overlay is attached to the adjacent automatic activity. The
overlay range is activity. That way, the ticket is marked with the overlay when the e-mail has come in.

Within the script which follows the mail trigger, a boolean field mail_to_read is set to true. In the workflow, an
activity Confirmed: e-mail read! is offered wherever required. It is only displayed in case the value of the
boolean field mail _to_read is true. This is a stronger mechanism to remind the engineer of an incoming
e-mail than to use only the overlay. The engineer has to confirm the e-mail by executing the workflow activity
Confirmed: e-mail read! explicitly. Within this workflow activity the value of the boolean field mail_to_read is
set back to false. Now the ticket is ready to receive another e-mail and to notify the engineer.

Please note that also in this case the ticket does not leave its context as a consequence of the action which
is executed after the e-mail has come in. All that happens is the attachment of the overlay to the ticket icon
and the modification of a boolean variable. The ticket returns to its original position in the workflow. So this is
also an interrupt. Please read the section Process Logic for a detailed explanation.

]

b

E-mail receiwved

(=]

Fig. 5: ConSol*CM Process Designer - Use Case 2: Scope with Mail Trigger

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

: Properties » x
= Properties

name Email_received E]
label E-mail received [J
description [:]
sort index 1 [
overlay E]
overlay range [Activity -]
precondition E]
script Script i= provided E]
activity type [Automatic - |
history visibility [default =
dizable auto update

Fig. 6: ConSol*CM Process Designer - Use Case 2: Properties of Activity "E-mail received"”

Groups

Fields

F|Iter:| |[A.I|Iqua..|e5 v]

Ticket data | Customer data | Activity Form data

MName

helpdesk_standard
sales_standard
qualification
workaround
feedback
dependent_enum
queue_fields

fag

| | rumbers

e e ——————

Filter: | |

MName Data type

[[e](2]

2N i io

o/p]lello]MH (e

I Assigned annotations

Assigned annotations

I | Name Value Annotation group

MName Value Annotation group

Fig. 7: ConSol*CM Admin-Tool - Use Case 2: New Boolean Field to Register E-Mail

Compilation result

Mo errors

1 |r.icker..set{“serviceDesk_fields .mail_to_read",true J|

Fig. 8: ConSol*CM Process Designer - Use Case 2: Script for Activity "E-mail received"”

87

88 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Date has been reached

Inform team lead

Re-activate ticket

Confirmed: e-mail
read!

Fig. 9: ConSol*CM Process Designer - Use Case 2: Activity for E-Mail Confirmation

Properties I =
name Confirmed_email_read E]
label Confirmed: e-mail read! E]
description ()
sort index 12 [
overlay L
precondition Script is provided E]
script Seript is provided E]
activity type Mamwal =
history visibility default 4]
disable auto update |

|

Fig. 10: ConSol*CM Process Designer - Use Case 2: Properties of Activity "Confirmed: e-mail read!"

Fig. 11: ConSol*CM Process Designer - Use Case 2: Precondition Script for Activity "Confirmed: e-mail
read!"

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 89

& Edit script [= |

Script

1 |ticket.set("serviceDesk fields.mail_to_read",false)

Compilation result

Mo errors

’ OK] [Cancel]

L

Fig. 12: ConSol*CM Process Designer - Use Case 2: Script for Activity "Confirmed: e-mail read!"

Ticket Accept | Edit | Clone | Print | Display w Waorkflow activities

m

Close ticket with solution

Time Booking System unavailable

ServiceDesk | Work in progress

100740 Unassigned | Open since 2/24/14 8:49 AM Confirmed: e-mail read!
high odule misc
Ask for feedback no
Germany
Workspace
Customers Add | Hide |

Main customer
Mr Luke Skywalker
Starship Operator Prof. Dr.

Fig. 13: ConSol*CM/Web Client - Use Case 2: Workflow Activity "Confirmed: e-mail read!"

Process Logic with Mail Triggers
When an e-mail is received, the mail trigger of the innermost possible scope fires.
Example 1:

The ticket is at position (1) in the Ticket on hold scope. When an e-mail comes in, the mail trigger for this
scope fires (2) and, as a consequence, the ticket is moved to another scope (3).

90 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

E-Mail receiwed!
=]

Set parameters

1

Fut ticket on hold

Fig. 14: ConSol*CM Process Designer - Example 1: Mail Trigger of Sub-Scope Active

Example 2:

The ticket is at position (1) in the Work in progress scope. When an e-mail comes in, the mail trigger of the
main scope (2) fires (because the Work in progress scope does not have a mail trigger). So the ticket
position is not changed (3).

E-Mail received!

New IT ticket "
Check SLi VIP customer! Set
overlay!

13

Date has been reached g
e 2 _
b L

Re-activate ticket

Put ticket on hold

Fig. 15: ConSol*CM Process Designer - Example 2: Mail Trigger of Main Scope Active

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 91

4.7.4 Business Event Triggers

® Business Event Triggers
® Introduction to Business Event Triggers
® Adding a Business Event Trigger to a Workflow
® Adding a Business Event Trigger to a Scope
® Properties of a Business Event Trigger
® Business Logic of Business Event Triggers
® Firing Order of Serialized Business Event Triggers
® Firing Order of Business Event Triggers in Hierarchical Scopes
® Casel
® Case 2
® Case3
® Examples for Business Event Triggers
® Use Case 1: Check Engineer Comment
® Use Case 2: Re-Calculate the Ticket Priority if Impact and/or Urgency Have Been
Changed
® Use Case 3: Continue Delivery Process When Shipment for the Order Has Arrived
Best Practices: Using Business Event Triggers

Introduction to Business Event Triggers

In business processes, there are often events during a regular process which have to be taken care of. For
example, it might be required to inform the team lead if someone sets a ticket priority to Extra High. Or, after
a change of the engineer of a ticket, it might be required to see if the engineer is logged in (if he/she is not in,
the ticket has to be transferred to another engineer). There are numerous examples in business life for such
events.

)
oy

Fig. 1: ConSol*CM Process Designer - Business Event Trigger
ConSol*CM can notice events using business event triggers and can react to the following types of events:

® change of engineer

® change of queue

® change of the subject

® change of the referenced engineer(s)

® change of a comment
(usually adding a new comment, i.e. a text comment or an e-mail)

® change of any custom field which has been defined by the system developer
(this can be e.g. the priority, a category, the content of a certain text box)

92 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

When the event occurs, the business event trigger fires.

@ Information:

You as a workflow developer have to implement everything that should happen as a consequence
when a business event trigger has fired! There are no automatic actions. All the business event
trigger does, is to give a signal event has occurred.

A workflow can contain as many business event triggers as required. However, you have to make sure that
in the process it is possible that all business event triggers can fire potentially (and that one does not depend
on an action which cannot ever happen, because another business event (or time) trigger has fired before).
Please see section Process Logic for more information.

Adding a Business Event Trigger to a Workflow

Business event triggers can only be attached to a scope, never to activities.

Adding a Business Event Trigger to a Scope

Grab the business event trigger icon in the palette and drop it into the desired scope. It is automatically
attached to the top of the scope. You can modify the position afterwards (move it to the left or right to change
the order of triggers or just to improve the layout).

A business event trigger which has been attached to a scope cannot be moved to another scope. In case
you would like to attach a business event trigger to another scope, remove the one you have defined and
create a new one for the correct scope.

To configure the properties of the trigger, select it in the editing panel and set the correct values in the
Properties Editor. See the following section Properties of a Business Event Trigger .

You can draw connections from the trigger to put activities or decision nodes behind it. The first step which is
executed after a business event trigger always has to be an automatic activity!

Properties of a Business Event Trigger

: Properties Ir =
-/ Properties

gueue

engineer v

subject

comment

referenced engineer

custom field

script after event

Fig. 2: ConSol*CM Process Designer - Properties of a Business Event Trigger

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 93

A business event trigger has the following properties:

® queue
Mark this check box if the business event trigger should react to a change of the queue, i.e. the trigger
fires when the ticket is transferred to another queue. It is not relevant if this has been a manual action
or has been performed automatically by the system.
® engineer
Mark this check box when the trigger should react to a change of the engineer (owner) of the ticket.
This can be a manual or an automatic action. There are three possible constellations:
® The ticket did not have an engineer and an engineer is set.
® The ticket has an engineer and the ticket is given to another engineer.
® The ticket has an engineer and the engineer is set to null (no engineer).
® subject
Mark this check box when the trigger should react to a change of the ticket subject.
®* comment
Mark this check box when the trigger should react to the change of a comment, i.e.:
® An engineer has added a new (text) comment.
® A customer has added a new (text) comment using ConSol*CM/Track access.
® An e-mail has been received for the ticket.
® An e-mail has been sent out from the ticket.
® One or more attachment(s) has/have been added to the ticket.
* referenced engineer
Mark this check box when the trigger should react to a change of additional engineers in certain
engineer roles of the ticket (ticket section Engineers). This can be one of the following situations
(manually set or automatically by the system):
® The ticket did not have any additional engineers and one or more additional engineer(s) is/are
set.
® The ticket has one or more additional engineer(s) and one or more of them is/are set to null or
changed to another name.
® The ticket has one or more additional engineer(s) and all those engineers are set to null (no
engineer).

94

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

® custom field

Use the (...) button to open the pop-up window Event trigger (see next figure) where you can select
the custom field(s) which should be monitored. Use the plus and minus buttons to add more fields or
to reduce the number of monitored fields. As in the custom field definition (see ConSol*CM
Administrator Manual, section Custom Field Administration), you first have to select the custom field
group in the left pull-down menu and then you can choose one of the custom fields of this group in the
right pull-down menu. You can select as many custom fields as you like.

£ Event trigger @

Custom field changes

briority] w | |priority - | + - | =
category1_fields F.
helpdesk_standard

qualification

SD_fields

workaround

oy
queue_fields

admin_fields

m

94

use asterisk (*) to indude all groups or fields
OK Cancel
"

Fig. 3: ConSol*CM Process Designer - Property "custom field" of a Business Event Trigger

script after event

Here you can define a script (using the ConSol*CM Script Editor) which should be executed when the
business event trigger has fired. It has to return true or false. When it returns true, the event is really
fired, i.e. the automatic activity behind the business event trigger is executed. In case the script
returns false, the event is blocked and the automatic activity is not executed. That way you can
exactly control when the action (activity) should be performed, e.g. the trigger reacts to a change of
the priority but should only really fire when the new priority is Extra High. Then the script checks the
new priority and only when the new value is Extra High the script returns true, for all other values it
returns false.

. Attention:

The script after event is only used to control and fine-tune the firing of the business event
trigger! Every action which should be performed when the trigger has fired has to be located
in an automatic activity behind the trigger! This guarantees a good process logic and helps
visualize the process in the Process Designer.

Business Logic of Business Event Triggers

Firing Order of Serialized Business Event Triggers

When an event has occurred which is relevant for a business event trigger, this trigger fires. Then the script
after event is executed. If it returns true, the following automatic activity or decision node with two following

automatic activities is executed.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 95

If the engineer changes more than one ticket parameter and different business event triggers have been
defined for those parameters at the scope, the business event triggers fire according to their order at the

@@ @ @ @“@

Comment by ticket owner?

scope.

EB' Send queus change
Be-calculate priority i medll Fr e

lead
New comment - not
New comment from

from ticket owner .
ticket owner

Fig. 4: ConSol*CM Process Designer - Firing Order of Business Event Triggers (1)

If one of the business event trigger actions leads the ticket to a new destination (i.e. it is no longer in the
scope where the next business event trigger would be located), the following business event trigger is not
fired. In the example in the next figure, business event trigger (3) will not be fired, if the Re-calculate priority
trigger (2) has been fired (see Use Case 2 in section Examples for Business Event Triggers), because the
subsequent actions lead the ticket to another queue.

@@ @@ @@

Comment by ticket owner?

(]
Re-calculate priority Do something
LT @EEmEmE = ma New comment from
from ticket owner T R e (>

IndLevel
Pass to Znd lewel

To IndLewvel cueus
e
||
Fig. 5: ConSol*CM Process Designer - Firing Order of Business Event Triggers (2)

Firing Order of Business Event Triggers in Hierarchical Scopes

In case there are business event triggers in hierarchical scopes, the event is consumed by the innermost
business event trigger, i.e. by the business event trigger of the innermost scope. All events which have not
been consumed there, are further processed by the next outer scope, then the next and so on.

96 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Case 1l

Fig. 6: ConSol*CM Process Designer - Hierarchical Business Event Triggers (1)

Fired events:

Events Triggers fired
Queue Inner
Queue and Engineer Inner for both
Engineer Inner

Case 2

Fig. 7: ConSol*CM Process Designer - Hierarchical Business Event Triggers (2)

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fired events:

97

Events
Queue

Engineer

Queue and Engineer

Triggers fired
Outer
Inner

Inner and Outer

Case 3

&)

k-

Queue and Engineer

IHHER. Scope

i

Some activity

Fig. 8: ConSol*CM Process Designer - Hierarchical Business Event Triggers (3)

Fired events:

Events
Queue

Engineer

Queue and Engineer

Triggers fired
Inner
Outer

Inner (queue) and Outer (engineer only)

98 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Examples for Business Event Triggers

Use Case 1: Check Engineer Comment

If a new comment has been added to the ticket by someone else, not by the current engineer (the ticket
owner), then an overlay should be attached to the ticket icon. That way the ticket is marked and the engineer
can see in the ticket list that there is a new comment in one of his/her tickets. The comment can be made by
another engineer who has writing access to the queue or by a customer who can add comments using
ConSol*CM/Track access. Or an e-mail might have been received.

@

Comment by ticket owner?

(X]

New comment - not ew comment from
from ticket owner T e e

Fig. 9: ConSol*CM Process Designer - Business Event Trigger with Following Activities

: Properties I =
- Properties

gqueue

engineer

subject

comment o

referenced engineer

custom figld U
script after event U

Fig. 10: ConSol*CM Process Designer - Properties of a Business Event Trigger (1)

Code of decision node script

return (workfl owApi . get Current Engi neer () == ticket.getEngineer())

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Lodin not possible - please hel
Jd o}
Asfigned to: Chef, Charly

Workgroup tickets (0)

Unassigned tickets (3) q

Logged in: Charly Chef | *

View: SenviceDeskActive Ticket

.+ Login not possible - please help soon

J

3

Assigned to Chef, Charly | Offen since 2/20/14 3:24 PM

Customers

Main customer
Mr w CM Customer

Luke Skywalker
luke@localhost

99

¥ - y(\’

Edit | Clone | Print | Display v Workflow activities

New IT ticket
Workspace

Add | Hide

m

Favorites

Engineers Add | Hide
No relations Add | Hide
History Comment | E-Mail | Attachment | Time booking | Hide

Display all entries « Sorting latest first +

Add comment, e-mail or attachment

22114 #6 created by Susan ServiceDesk | Action «
10:01 default class

Today | talked to the customer - problem has been solved.

10:01 New comment - not from ticket owner has been triggered
10:01 Comment by ticket owner? has been friggered

22114 #5 changed by Charly Chef
10:00 Engineer assigned to Charly Chef

212114 #4 changed by admin

09:59 Ticket has been transferred to new activity defaultScope/Service_Desk/Start1

212014 #3 changed by admin
15:43 Ticket has been transferred fo new aclivity default Scope/Service_Desk/Start1
15:38 Ticket has been transferred fo new aclivity default Scope/Service_Desk/Start1

220114

#2 changed by Workflow Timer
15:27 Engineer set? has been triggered

Fig. 11: ConSol*CM/Web Client- Ticket Marked with New Overlay

Use Case 2: Re-Calculate the Ticket Priority if Impact and/or Urgency Have Been

Changed

This is an example from an ITIL Service Desk environment. According to the /TIL standards, the ticket
priority is calculated from two values: impact and urgency. That means, in the ticket there are two fields
which can be modified by the engineer and the priority is calculated automatically from the two values. The
priority might then be displayed as ticket color or as read-only list (or both).

This principle requires a re-calculation of the priority in case at least one of the two fields (impact/urgency)
has been changed. This is achieved using a business event trigger with an adjacent activity where the

re-calculation is performed.

)
iy

Be-calculate priority

Fig. 12: ConSol*CM Process Designer - Business Event Trigger with Following Automatic Activity

100 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

: Properties I+ =
—| Properties

queue

engineer

subject

comment

referenced engineer

custom field muttiple attributes U
script after event]

Fig. 13: ConSol*CM Process Designer - Properties of a Business Event Trigger (2)

& Event trigger Lé]

Custom field changes
service_desk_fields « | |urgency - +

service_desk_fields « | [impact - +

use asterisk (*) to indude all groups or fields
oK Cancel
& |

Fig. 14: ConSol*CM Process Designer - Property "custom field" of a Business Event Trigger (2)

Code of automatic activity script Re-calculate priority

/] Re-calculate priority:
String inp_value = ticket.get("service_desk_fields.inmpact").getNane()
String urg_value = ticket.get("service_desk_fields.urgency").getNane();

Scri pt Provi der scriptProvider =

scri pt Provi der Servi ce. cr eat eDat abaseProvi der ("cal cul atePriority.groovy")

//content of calculatePriority.groovy is omtted here, because it is not relevant for the
current context

Use Case 3: Continue Delivery Process When Shipment for the Order Has Arrived

This is an example taken from a shipment and delivery process: new components (e.g. hardware) are
ordered. The ticket waits in the scope Order: Waiting for shipment. When the shipment has arrived, an
engineer of another team registers this shipment and sets the Shipment received tag. This change of ticket
data (Shipment received from false to true) is registered by the business event trigger which listens to the
respective boolean value (the check box). After the business event trigger has fired, the check box is
checked (in the decision node), and when the value is set to true, the ticket is forwarded to the next scope
Deliver components. The engineers who are responsible for the delivery now see the ticket in their view
Components ready for delivery and can acknowledge the delivery when they are done with All components
delivered.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 101

waitForAction

[Shipment: 0K
All components delivered

Fig. 15: ConSol*CM Process Designer - Workflow for Use Case 3

Best Practices: Using Business Event Triggers

See section Best Practices: Avoid Self-Triggering Business Event Triggers.

102 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

4.7.5 Activity Control Forms (ACFs)

® Activity Control Forms (ACFs)

® Introduction to ACFs

® Adding an ACF to a Workflow
® Variant A: Starting the ACF Definition Using the Admin-Tool
® Variant B: Starting the ACF Definition Using the Process Designer

® Properties of an ACF

® Business Logic of ACFs
® ACF at Manual Activity
® ACF at Manual Activity with Condition

® Examples for the Use of ACFs
® Use Case 1: ACF for the Dismissal of a Customer Request
® Use Case 2: Fill-in Sales Information when Bid is Created

Introduction to ACFs

An Activity Control Form (ACF) is a web form which is offered to the engineer at one or more process steps.
In this way, the data input can be controlled in a very strict way.

hiss ticket ...

Fig. 1: ConSol*CM Process Designer - Activity Control Form (ACF)

For example, when a help desk agent wants to dismiss a complaint, this cannot be performed without giving
a reason. In the process this is implemented using an ACF which is displayed when the engineer has clicked
on the workflow activity Dismiss complaint. A form is opened where the engineer has to select a category for
the dismissal and a text box where he/she can enter a note. Or, using the example of a sales process, when
an engineer (a sales agent in this case) clicks on Make appointment with potential customer, a form is
displayed, where the budget, the size of the customer's company, and the products of interest have to be
entered.

An ACF can offer optional and mandatory fields.

@ Information:

We recommend to set a "..." behind the name of every activity which will automatically open an
ACF. This helps the user to distinguish between ACF-loaded activities and simple activities.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 103

ConSol-* , <3
f | \ I r .
JIVIU Logged in: Susan ServiceDesk | *+ ‘ M\’
S| -
U ServiceDeskAl Ticket Accept | Edit | Clone | Print | Display ¥ Workflow activities
Own tickets (9) Dismiss ticket ...

Please enter the reason for the dismissal of this ticket:
Workgroup tickets (3)

(Comete [3]"

Choose One Workspace
No

G} Check invoice # 998877 Customer Emor

Vs Customer: Skywalkerlea) Duplicated Request

100265 713114 115 PM ‘

Miscellaneous

(9 Sellaprinter to each specialend]
@ customer

Customer: Skywalkerl uke

misc

5/5/14 3.07 PM

Favorites

100260 My Sky Search

OK Cancel

Customer guestion reqardin
product documentation g Check invoice # 998877
100251 Customer: Skywalkerlea uo ServiceDesk | New ticket
Ch/Phone 100265 Unassigned | Open since 7/31/14 1:15 FM
3/28114 2:30 PM high
no

Annlicatinn AQC nnt auailahla

Fig. 2: ConSol*CM/Web Client - Opened ACF

Adding an ACF to a Workflow

Variant A: Starting the ACF Definition Using the Admin-Tool

Before you can add an ACF to the workflow, it has to be defined using the Admin-Tool. Please refer to the
ConSol*CM Administrator Manual, chapter Custom Field Administration for a detailed explanation. Here, we
assume you have already defined an ACF and want to add it to the workflow.

An ACF is always added to a manual activity. To add an ACF to the target activity, grab the ACF icon in the
palette and attach it to the activity using drag-and-drop. Then you can configure the ACF properties. In case
you add an ACF to an automatic activity, this activity is changed to type Manual.

In the Web Client, the ACF will be opened when the user clicks on the workflow activity to which the ACF is
attached in the workflow. See figure above.

Variant B: Starting the ACF Definition Using the Process Designer

You can also add an empty ACF to a workflow activity and define the name during this operation. Then an
empty ACF will be created in the Admin-Tool and you have to assign the custom fields to this ACF in a later
step.

~ Attention:

Do not forget to reload the Admin-Tool data! When you have defined the ACF in the Process
Designer, there is no automatic data transfer to the Admin-Tool.

104 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Properties of an ACF

These are the properties of an ACF:

®* name
The name of the ACF. Select the name from the drop-down menu. All ACFs which have been defined
in the Admin-Tool are available.

® required fields
This opens a pop-up window (see figure below) where you can define mandatory fields. As a default,
all ACF fields are optional, i.e. when the form is opened in the Web Client, the user can enter data but
can also continue the process without doing so. For mandatory fields, the process can only be
continued when the field has been filled.

® Script
Here, you can define a script which will be executed before the ACF is loaded. Usually, this kind of
script is used to set default values in ACF custom fields.

Properties 2 =]
= Properties

name DismissTicketACF -
required fields ServiceDeskDismissFislds [dismi

Initializing script
—| | Precondition script

-

& Activity Control Form

Required fields
dismissalReason (ServiceDeskDismissFields

[7] dismissalR.easonText (ServiceDeskDismissFields)

?
Fig. 3: ConSol*CM Process Designer - Properties of an ACF

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 105

% Attention:

All custom fields which are part of an ACF have to be available in the target queue, i.e. the
respective custom field group (CF group) has to be assigned to the queue where the workflow is
used! There are two possibilities to achieve that:

1. You assign the CF group to a queue manually.
2. You just create the ACF and use it in a worflow. When you deploy the workflow, ConSol*CM
will automatically assign the required CF groups to the queues where the workflow is used.

For a detailed explanation of queue management, please see the ConSol*CM Administrator
Manual.

Business Logic of ACFs

ACF at Manual Activity

ACFs are only possible for manual activities. When a user selects a workflow activity in the Web Client, the
ACF script is executed (if there is a script). Then the ACF is opened in the Web Client (with optional and
mandatory fields). If fields, which are part of the ACF, are also available in the regular ticket data fields,
those fields might have been edited/filled-in by an engineer before the ACF is used. Thus those fields might
be already filled-in in the ACF. The engineer can leave them as-is (and use the ACF as control only) or can
modify the content of the fields.

If the data of the ACF should not be shown before a certain step in the process has been reached, the data
can be put into one (or more) separate custom field group(s) which are invisible at the start of the process. In
the step after the activity with the ACF, the custom field groups are faded in using the script of a workflow
activity. Please refer also to the Best Practices section in this manual for more recommendations concerning
the use of ACFs.

When an ACF is canceled, it returns to the scope of the last activity, because the ticket always waits behind
the last activity (and not before the next).

Ticket dismissed!

Hew ticket
o“ |?=] e Ticket dismissed - END
START o o O * Dismiss ticket ... @

© O o 3et parameters

4 4
Fig. 4: ConSol*CM Process Designer - ACF Process Logic

Example:

106 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

® Aticket is created and runs through the automatic activity Set parameters.
® |t waits behind this activity, at position (1) in the scope New ticket. The next activities Dismiss ticket ...
and New IT ticket (not shown here) are displayed in the Web Client.
® The engineer selects Dismiss ticket
® The script for the ACF at Dismiss ticket ... is executed (2).
®* The ACF is shown in the GUI.
1. Variant 1:
a. The ACF is canceled.
b. The ticket goes back to (1).
2. Variant 2:
a. The ACF is filled-in and confirmed.
b. The activity Dismiss ticket ... is executed (in case there is a script in this activity, the
script is executed), the ticket passes through the node and continues on its way (3). In
the example above, it is closed.

ACF at Manual Activity with Condition

In case a manual activity has a condition, the activity is only displayed if the condition script returns true, i.e.
also the ACF is only displayed if the condition script returns true.

Ticket dismissed!

,u |—E‘.|0 Ticket dismissed - EID

C) Dismiss ticket ... @

Fig. 5: ConSol*CM Process Designer - Manual Activity with ACF and Condition

Examples for the Use of ACFs

Use Case 1. ACF for the Dismissal of a Customer Request

This example was used in the previous sections. The engineer can only dismiss a customer request when a
reason has been given. This is selected from a drop-down menu. Additionally, the engineer can add a note
in a text field.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 107

Fiter: | | AMlqueves ||| Fier: |
Name Data type

MName dismissalF.eason Enum
helpdesk_standard dismissalR.easonText lang string
sales_standard

conversation_data

qualification

Fig. 6: ConSol*CM Admin-Tool - ACF Definition

) ¢

B
@ @ Dismiss ticket ...

‘m
receipt @ l?
Check 3LA VIP customer! Set
overlayl!

Fig. 7: ConSol*CM Process Designer - ACF in Workflow

The Web Client GUI and the ACF properties are shown in the figures of the previous paragraphs.

Use Case 2: Fill-in Sales Information when Bid is Created

When a sales representative selects the workflow activity Create bid in the Web Client GUI, an ACF is
opened where several fields are offered. One field is a drop-down menu and a default value is set via script.
The other fields are optional. The field Product has been filled-in for the ticket in previous process steps, so
this field is offered with the selected value. It can either be left unchanged or it can be modified.

108 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

- =
Edit Activity Form g
i Edit Activity Form.

i
-
ﬁ CM6 Admin-Toal @ cmédoku-cmlint.conscl.de

_ Dews
ﬁ lx % Y m Si ‘ Mame: |CreaheBid_&CF |
Fﬁr____________________________ Description: T

Queue and Engineer Fields
Filter; | | [AJI queues Emesy

Show queue Show engineer
[Teket ot Aty Form dta |

s Custom Fields

e, ™ i | Group fiter: [sales_standard |
CreateBid_ACF
fE.Ed!. aTd'dOE(HACE igned Display in new raw Available =

product (sales_standard) effort (sales_standard)
auatty sales_chance (sales_standard) existing_customer (sales_standard)
workaround

volume_consulting (sales_stan. ..
volume_product (sales_standard)
BidInitiator (sales_standard)

incoming_date (sales_standard)
origin (sales_standard)
priority (sales_standard)

OEEE@

T [e] LIt T]
[ectvty Fom esoton

= [CM_Administration, Workfiow_Admin]

.

Fig. 8: ConSol*CM Admin-Tool - ACF for Sales Workflow

® o

I‘HEHIEHEHHHHI
Cancel bid creation

Fig. 9: ConSol*CM Process Designer - ACF in Sales Workflow

Process Designer: Initializing Script for Create Bid ACF

ticket.set("sales_standard.Bidlnitiator","M. Mller")

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 109

Ticket

Accept | Edit | Clone | Print | Display + Workflow activities
Create bid ...

Product | Cthers |Z| * Sales chance | 50% - Product and budgeiE *

Wolume consulting * Wolume product *
Intiator of this bid: |Mr. Miller

| oK | | Caneal |

u New Sales Opportunity in Bordeaux: Call asap (CM/Phone)
o

Sales | Sales
Adnnacc LA H

Workspace

Fig. 10: ConSol*CM/Web Client - Sales Process ACF

110 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

4.8 Jump-out and Jump-in Nodes

® Jump-out and Jump-in Nodes
® Introduction
¢ Jump-out Nodes
® Properties of a Jump-out Node
® Jump-in Nodes
® Properties of a Jump-in Node

4.8.1 Introduction

A process often consists of one or more sub-processes, e.g. in an IT help desk, there might be a first level
team who accepts and qualifies the tickets, a second level team who can solve several problems, and some
third level team with specialists. When you want to represent this process, you have to build a workflow for
each special sub-process (1st level, 2nd level, 3rd level). Then the sub-processes have to be linked to make
sure the handover of the ticket from one team to the next uses the correct way in the process.

A ticket might pass from the first level to the second level, on to a third level team, back to the second level
team with another question, back to another third level team, and then back to the first level team who
contacts the customer. So we need connections from one sub-process to the next one, i.e. nodes where a
ticket leaves the present workflow, a jump-out node, and the counterpart in the following workflow, the
jump-in node. If the ticket should start at the START node of the new process, no jump-in node is required.

In the Process Designer, jump-out and jump-in nodes are inserted into the workflow by drag-and-drop from
the palette and are linked to other workflow elements depending on the desired process.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 111

4
(2 N
Initialize support
d scope .
Close immediately
: . Incoming message
Cl fr k -
oae & ver e (=} Mail to the boss

response Process

Close after response Incomning Message -

Cancel wait

o 5

Wait after query
()

o

Mark as solved

o

Fig. 1: ConSol*CM Process Designer - Example for Jump-out and Jump-in Nodes

4.8.2 Jump-out Nodes

A jump-out node defines a position where the ticket is to leave the (sub-)process and to enter the next
(sub-)process.

Fig. 2: ConSol*CMProcess Designer - Jump-out Node

Properties of a Jump-out Node

For a jump-out node the following properties can be defined:

® name
Mandatory. Technical object name.

112

: Properties Ir =
- Properties

name toZndLevelWithout ()
label Transfer to 2nd level ()
description Transfer to 2nd Level - no workaround provided D
sort index 30 ()
jump out node type [Manual =]
script Script is provided D
target queue name [HelpDesk_znd_Level v]
target jump in node [de1'aultSmpe,f'semnd_leuelfh'ansfer_lst_level_wiﬁ'mut v]
higtory visibility |default]
dizable auto update |:|

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

label

Optional. Localized name (if not set, the technical name is used) that will be displayed in the Web
Client GUI.

description

Optional. It will be displayed as mouse-over in the Web Client GUI.

sort index

Defines the order of the activities in the Web Client GUI.

jump out node type

Mandatory. Either Automatic or Manual has to be selected. In case it is a manual node, the node is
marked with the hand/manualicon 4 in the Process Designer GUI.

script

Optional. A script can be defined which is executed when the ticket enters the node.

target queue name

Select the queue name to which the ticket should be passed.

target jump in node

Select the jump-in node from the drop-down menu. All jump-in nodes from the workflow of the
selected queue are offered. If no jump-in node is selected, the ticket will enter the other process, i.e.
the target queue, at the START node.

@ Information:

When you start designing workflows you might have a chicken-and-egg problem when you
start to define jump-out and jump-in nodes, because obviously you will have to start with one
workflow when the other workflow is not yet present. We recommend to work with dummy
queues without specific jump-in node. Then add the correct target queue name and the
name of the jump-in node later.

history visibility

See section history visibility
disable auto update

See section disable auto update

Fig. 3: ConSol*CM Process Designer - Jump-out Node: Properties Editor

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 113

4.8.3 Jump-in Nodes

A jump-in node is a hode which defines the position where a ticket from another process (queue) can enter a
gueue with the current workflow. All jump-in nodes of a workflow are offered as target jump-in nodes when
the queue with the respective workflow has been selected as target queue for a jump-out node.

From Znd level with solution

D

(o)

Fig. 4: ConSol*CM Process Designer - Jump-in Node

Properties of a Jump-in Node

For a jump-in node the following properties can be defined:

® name
Mandatory. Technical object name.
* label
Optional. Localized name (if not set, the technical name is used) that will be displayed in the Web
Client GUL.
® description
Optional. It will be displayed as mouse-over in the Web Client GUI.
® script
Optional. A script can be defined which is executed when the ticket enters the node.
* overlay
Optional. Click into the orange space to load a standard ConSol*CM overlay or use the file explorer
(...) for an upload of another icon from the file system.
® overlay range
Only displayed when overlay has been set.
® Activity
The overlay is attached only as long as the ticket stands behind the activity. As soon as the
next activity is executed, the overlay is deleted from the ticket icon.
® Scope
The overlay is deleted when the ticket leaves the scope.
®* Process
Once the overlay has been attached to the ticket icon, it stays there for the rest of the process.
®* Next overlay
The overlay is attached to the ticket icon as long as no new overlay appears. In that case, only
the new one is attached, the old one is deleted.
® history visibility
See section history visibility.
® disable auto update
See section disable auto update.

114 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

: Properties I =
= Properties

name from_2nd_level_solution E]
label From 2nd level with solution E]
description Back from 2nd Level, solution is provided E]
script ()
overlay (o) L)
overlay range | Activity =
history visibility |default =
dizable auto update |:|

Fig. 5: ConSol*CM Process Designer - Jump-in Node: Properties Editor

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 115

5 Process Logic

® Process Logic
® Activities
® Interrupts and Exceptions
® [nterrupts
®* Exceptions
® Loops (Errors in Workflows)
® Process Logic of Time Triggers
® Process Logic of Business Event Triggers

When you create and modify workflows it is important to know the basic principles of the workflow engine
which result in the behavior of the ticket during the process. Therefore, we will give you a short overview of
the basic rules of ConSol*CM ticket processing.

116 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

5.1 Activities

Basic rules:

® Passing through a workflow, a ticket always waits behind the last activity, not before the next!

® Then it looks for the next activity which can be executed/passed.

® |f the next possible activity is a manual activity, the ticket stays at the position behind the previous
activity (number (1) and (2) in the following figure).

® |f the next possible activity is an automatic activity, the activity is executed, i.e. the ticket passes
through this activity (number (3) in the following figure).

® An activity can have one or more manual activities as successor activities or an activity can have
(only) one automatic activity as successor activity.

®* When you save a workfow, the Process Designer automatically executes a consistency check. If there
are any inconsistencies (e.g. two automatic activities), an error message is displayed and the
workflow cannot be saved.

O

Fig. 1: ConSol*CM Process Designer - Process Logic 1

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 117

5.2 Interrupts and Exceptions

In the course of a process, i.e during the time when the ticket is open and engineers work on it, there might
be events which have to be taken care of. For example, when an e-mail is received by the ticket or when a
time range for an SLA has run out, it is important to register the event and to react accordingly.

There are two ways to define the reaction and behavior of the tickets. You can implement an ...

® interrupt
This is a workflow architecture where the event is registered, one or more automatic activities are
executed, and the ticket returns to its previous position in the workflow.

® exception
This is a workflow architecture where the event is registered and, due to the following manual or
automatic activities, the ticket leaves its previous position and is taken to a new position within the
workflow or in another workflow.

5.2.1 Interrupts
Interrupts ...

® are activated by triggers.

® cause a short interruption of the process to react to the trigger event.

® use automatic activities (one or more subsequent automatic actions).

® put the ticket back to its previous position in the workflow, i.e. back to the position where it was when
the interrupt event has fired.

® are often used to mark the ticket icon with an overlay, e.g. when an e-mail has been received (see
figure below) or when an escalation time has been reached.

@ %

Comment by ticket owmer?

(x]
E-Mail received

@

New comment - not
Hew comment from

from ticket owner)
ticket owner

Fig. 2: ConSol*CM Process Designer - Two Interrupts

118 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

5.2.2 Exceptions
Exceptions ...

® are activated by triggers.

® move the ticket from its old position in the workflow to a new position. The latter can be in the same or
in another workflow.

® cause the process to continue at the new position.

New comment - not New comment from
from ticket owner ticket owmer

4

Eead and acknowledge
COMMENT

Fig. 3: ConSol*CM Process Designer - Exception

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 119

5.3 Loops (Errors in Workflows)

(Infinite) Loops will cause errors in a process. They cannot be detected by the Process Designer, so you
could deploy a workflow which contains a loop as shown in the figure below.

However, the process engine detects such loops at run-time and throws an InfiniteWorkflowLoopException
to prevent the complete system failure. You can of course see the exception in the server.log file. In the Web
Client, an error message is displayed.

Fig. 4: ConSol*CM Process Designer - Loop in Workflow

An error has occurred on 21814 at 554 PM. Please contact your Administrator.

Fig. 5: ConSol*CM/Web Client - Error Message when Loop Was Detected

2014-02-18 17:52:18,277 WERN [rkflowConfigurationServiceImpl] [admin-] Missing translation for process element, key: defaultScope.Servic

= Desk.Prequalify ticket.VIP_customer.info, bundle locale: null

2014-02-18 17:54:11,997 ERROC - - ;

com.consol.cmas.workElow. commlin. InfiniteWorkflowLoopException: Path: defaultScope/Service Desk/Activityl-defaultScope/Service Desk/Activity2 was already executed I
at com.consol.cmas.wo! T o —_ " o o T
at com.consocl.cmas.workflow.engine.exe.WorkflowElementExecutorimpl.doExecuteWithEvents (WorkflowElementExecutorInpl. java:87)
at com.consol.cmas.workflow.engine.exe.WorkflowElementExecutorImpl.executeInlnterrupt (WorkflowElementExecutorInpl.java: 78
at sun.reflect.GeneratedMethodAccessors197.invoke (Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke (DelegatingMethodAccessorInpl.java:2s)
at java.lang.reflect.Mechod.invoke (Method.java:597)
at org.springframework.aop.support.RopUtils.invokeJoinpointUsingReflection (AopUtils.java:31e)
at org.springframework.aop.framework.ReflectiveMethodInvocation.invokeJoinpoint (ReflectiveMethodInvocation. java:183)
at org.springframework.aop.framework.ReflectiveMethodInvocation.procesd (ReflectiveMethodlnvocation. java:150)

Fig. 6: Console - File server.log: Error Message Caused by Workflow Loop

Business event triggers can also cause loops when the automatic activity which is attached to the trigger
changes the parameter to which the trigger reacts. See section Best Practices - Avoid Self-Triggering
Business Event Triggers.

120 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

5.4 Process Logic of Time Triggers

See section Time Trigger Business Logic.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 121

5.5 Process Logic of Business Event Triggers

See section Business Event Trigger Business Logic.

122 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6 ConSol*CM Process Designer Manual -
Workflow Programming

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.1 Workflow Programming

* Workflow Programming
® Introduction
® Additional Tools for Workflow Programming
®* Notes About Method Syntax
® Getter Methods Can Often Be Omitted
® Setter Methods Can Often Be Omitted

6.1.1 Introduction

The process logic of ConSol*CM workflows is implemented using the two basic pillars of ConSol*CM

process intelligence:

1. The logic which results from the order of scopes, activities, and other workflow elements.
2. The workflow scripts (which contain the real intelligence).

123

So far in this manual, we have concentrated on explaining the workflow elements which can be implemented
using the graphic-driven functionalities of the Process Designer. In the following chapter, we will provide a

deeper insight in workflow construction and will explain workflow programming.

You should have a basic knowledge of Java and Groovy programming, because ConSol*CM scripts are

written in Groovy. We will not provide an introduction to programming in general.
In ConSol*CM workflows, scripts are used in the following contexts:

® As activity script for an activity.

® As precondition script for an activity which has to return true or false.

® As script for a decision node which has to return true or false.

® As script for a business event trigger which is executed when the trigger has fired.
® As script for a time trigger

® which is executed when the time trigger is initialized, i.e. when the ticket enters the scope

where the time trigger is attached.

® which is executed when the time trigger fires, i.e. when the defined time has elapsed.

® As script for end nodes.
® As script for jump-in or jump-out nodes.
® As scripts for ACFs.

Please refer to the respective sections in this manual for an explanation how to insert the scripts.

6.1.2 Additional Tools for Workflow Programming

To write scripts for workflow elements, you use the Workflow Script Editor which has been explained in

section The Script Editor.

124 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

As an important tool you will also use the ConSol*CM Java API documentation. Please ask your ConSol*
sales representative or CM consultant to receive the respective JAR file. It is a standard Java API Doc, so as
an experienced Java programmer you will get along quickly.

All Classes N
_|| Overview Package [HEEUse Tree Deprecated Index Help
Packages PREVCLASS NEXTCLASS ERAMES MO FRANES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAL: IELD | CONSTR | ETHOD

com.consol.cmas.common. model
com consol cmas common model

com consol.cmas common. model 1 y
com.consol.cmas common model autocomplete address ice .
com consol cmas common model calendar Interface WorkflowContextService
com.consol cmas common. model configuration
com_consol.cmas common. model content

com consol.cmas common model content aroup
com.consol.cmas.common. model content. unit
com_consol cmas common. model customer
com consol cmas common. model customfield Service provides methods to allow access to core business services from workflow scripts level.
com consol.cmas common model customfield ciel
com consol cmas common. model customfield dependent | Author:

public interface WorkflowContextService

com consol cmas common. model customfield enums 2 bartek
ViewE numFieldDefinitionReference =
ViewE numGroup
Ve Emmareur Nested Class Summary
ViewE numValueReference static class [WorkflowContextService.DUMP FORMAT
- Deprecated.
Field Summary
static string|SERVICE NAE
Method Summary
Ve vesaactivatetnas Gnse pUnic) -)
ViewstaticDiscriminator vated given unit and all of its child units which were deactivated together with parent
VisibilityConfiguration void|addAddi tionalContact (long PTicketId, long pContactid, String pRoleName)
ISibiityC Bulder : ren tick - 3
S e ribute 'Add an additional contact to the given ticket with the given customer-role.
isibiityConfiqurationEvent o1 |addAai tionalcontact (1ong pContactid, String pRoleName)
VisiointyConfigurationService 'Add an additional contact to the current ticket of WilContext with the given customer-role.
VisibilityContext -
WIRE
N ‘Add an attachment to a ticket from current context.
Actachmentincey|adaAttachment (Iicker pTicket, AttachmentEncry pAtcachment =
Ut Add an attachment to a ticket
oe
ontextService DUMP_FORMAT void|addNewPrimaryContact (long pTicketId, long Id, String pRoleN:
Definition Set the contact of the given newPrimContactId asprimary contact of the given ticket.
. WorkfowElementsVisitor — ome EP e ———
Set the contact of the given newPrimContactld as primary contact of the current ticket of the WflContext.
void|addRelation (TicketRelationType pType, String pComment, long pSourceTickesld, long prargecTickecld)
i en ticket sourceTicketId and targetTicketld
WorkflowTicketTransferAware
WorkflowTicketTransferNotFi woid |ad Tex‘?ls g pText, 5.\:x11g pComment, boolean pCustomerReadable)
jorkflow TicketTransferService Add additional text to the ticket text.
WorkfiowTransferinfo “oid|aaaTicketText (Izcket plicket, String plext, Scring pComment, boolean pCustomsrReadable)
\orkllonTransiednto cason Add additional text to the ticket text of a ticket.
WorkflowTransferStatus
WronaD ERUMConfiaL F void|addTicketTextHtml (String pHeml, String pComment, boolean pCustomerReadable)

Fig. 1: ConSol*CM Java API Doc

6.1.3 Notes About Method Syntax

As mentioned above, you have to use Groovy syntax for ConSol*CM scripts. There might be different
possibilities to express or code the same content. In the following paragraphs we will give you some hints
and provide some examples how to work with the Groovy API.

Getter Methods Can Often Be Omitted

Most Java objects possess numerous getter methods to retrieve values from object attributes. In ConSol*CM
you can either use the complete getter methods, or you can use the short (convenience) form. Please see
the following examples for workflow scripts.

Use case Java-like syntax (extended Groovy syntax (short version)
version)

Get the subject of a ticket. String mysubject = def mysubject = ticket.subject
ticket.getSubject()

Get the engineer of a ticket. Engineer myeng = def myeng = ticket.engineer
ticket.getEngineer()

Get the main contact of a ticket. Unit mymaincontact = def mymaincontact =
ticket.getMainContact() ticket.mainContact

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 125

Use case Java-like syntax (extended Groovy syntax (short version)
version)

Get the value of a certain custom String myprio = def myprio =

field from a ticket. ticket.get("helpdesk_fields", ticket.get("helpdesk_fields.prio")
"prio")

Get the unit type for the primary Unit mycustomer = def mycustomer =

contact. workflowApi.getPrimaryContact() ~ workflowApi.primaryContact
UnitDefinition myunitdef = def myunitdef =
customer.getDefinition() customer.definition
UnitDefinitionType mydeftype = def mydeftype =
myunitdef.getType() customer.definition.type

Access to custom fields cannot be shortened, because there are no getter methods for those fields. Please
read the section Working With Data Fields for details about working with data from custom fields.

Setter Methods Can Often Be Omitted

Most Java objects possess numerous setter methods to set values for object attributes. In ConSol*CM you
can either use the complete setfer methods, or you can use the short (convenience) form. Please see the
following examples for workflow scripts.

Use case Java-like syntax (extended Groovy syntax (short version)
version)

Set the subject of a ticket. ticket.setSubject("asd") ticket.subject = "asd"

126 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.2 Important Classes and Objects

® Important Classes and Objects

® Introduction

® Important Objects
® Ticket
® workflowAPI

® Convenience Classes and Methods
® Example 1: Using ConfigurationService to Retrieve System Properties
® Example 2: Using EngineerService to Assign the Ticket to an Approver
® Example 3: Using EnumService to Retrieve an Enum Value by Name
® Example 4: Using TicketService to Retrieve all Tickets of a Certain View
® Example 5: Using EngineerRoleRelationService to Send an E-Mail to All Engineers of a

Role

6.2.1 Introduction

To make ConSol*CM script programming easier, the CM Workflow API provides easy access to objects
which are frequently used. Furthermore, convenience classes and methods provide a short way to various
objects and methods.

6.2.2 Important Objects

Some objects are implicitly present in workflow scripts.

., Attention:

The same objects are not present in Admin-Tool scripts, i.e. within Admin-Tool scripts you will
have to use import statements!

Ticket

In every workflow script, the current ticket can be easily accessed by the object ticket. It is derived from the
class Ticket and is implicitly present. No import and no instantiation is required.

Example:

Using the ticket object

def myld = ticket.getld()

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 127

workflowAPI

The object workflowApi is also implicitly present. It provides easy access to the interface
WorkflowContextService which is used for numerous operations.

Examples:

Using workflowApi to send an e-mail

wor kf | owApi . sendEnmi | (contact _e, subj,text,replyto, null)

Using workflowApi to assign aticket to current engineer

def curr_eng = wor kf | owApi . get Current Engi neer ()
ticket. set Engi neer (curr_eng)

Using workflowApi to deactivate a trigger

wor kf | owApi . deacti vat eTi mer (" def aul t Scope/ Servi ce_Desk/ Ti neTri gger1")

Using workflowAppi to display a GUI message for the engineer/user

wor kf | owApi . addVal i dati onError("1", "The ticket cannot be closed before a solution is provided.
Please fill-in solution and mark it with text class SOLUTION first.") }

6.2.3 Convenience Classes and Methods

The ConSol*CM API provides various convenience interfaces and methods which make access to most
objects of every-day CM programming a lot easier. Most of those convenience interfaces are part of the
package com.consol.cmas.common.service and its sub-packages. Please refer to the ConSol*CM Java API
documentation for details. Here, we will show you some examples which might prove useful for most CM
programmers.

The implementing instance of the interface is always available by replacing the first letter, which is a capital
letter, in the class name by a lower case one, e.g. the object (singleton) with the interface EngineerService is
available with the object engineerService, see Example 2.

Example 1: Using ConfigurationService to Retrieve System Properties

Using ConfigurationService to retrieve number of engineer management ticket

def tic_nr =
configurationService. get Val ue("custom nmyconpany- properties", "engi neer _nmanagenent.ticket.nr")

/1 then: ... do sonething with the engi neer managenent ticket, e.g. find out the name of the
next engi neer a service ticket should be assigned

128 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Using ConfigurationService to retrieve base URL of the system

def baseUrl = configurationService.getVal ue("custom nyconpany-properties", "base.url.myconmpany")
def url = baseUrl + "/cmclient/ticket/ticket_name/" + ticket.getName()

def itConplete = url + " " + ticket.getNane()

/1 ... do sonething with the ticket url, e.g. place alink to a child ticket in a table of the

parent ticket

Example 2: Using EngineerService to Assign the Ticket to an Approver

Example with use of EngineerService

/1 Script does the follow ng:
/'l Hand-over ticket to approver only when approver has been set in ticket as additional engineer

/1 lmport package, because classes are not available in workflow otherw se:
i mport com consol . cmas. common. nodel . ticket. user. function.*

/1 Get the nane of the approver which has been witten/stored in a customfield,
/1 nanely the field with the name , CF_Approver Name“ in the customfield group
/'l ,CF_G oupApproverData“. The value could be for example ,M. Mller“:

def gen = ticket. get (" CF_G oupApprover Data. CF_Approver Nane") . get Nanme()

/1 CGet the engineer object where the name ,M. MIller* is set, i.e. the engineer
/] object of the desired approver:
def gen_eng = engi neer Servi ce. get ByNane(gen)

/1 Cet the ticketFunction object which represents the ticketFunction (engineer role) ,Approver*“:
Ti cket Function tf = ticketFunctionService. get ByName(" Approver")

/1 Add the engineer object of M. MIller as Approver. i.e. in the ticketFunction

/'l (engineer role) ,Approver” to the ticket. One of the paramaters is ticket. This

/'l does not have to be instantiated, because it is inplicitly present in workflow scripts:
def tu = ticketUserService.addTi cketUser(ticket, gen_eng, tf, "Approver")

/1 Assign the ticket to the engineer, i.e. set the engineer M. MIller also as ticket owner.
def tic2 = workfl owApi . assi gnEngi neer (ticket, gen_eng)

We have two assignments here:

1. Mr. Miller is set as additional engineer in the engineer role Approver.
2. Mr. Miller is set as ticket owner.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 129

Example 3: Using EnumService to Retrieve an Enum Value by Name

Using EnumService to retrieve an enum value by name

def enunval ueMLA = enunBervi ce. get Val ueByNane("priority", "REGULAR')
ticket.set("hel pdesk_fields.prio", enunval ueM.A)

Example 4: Using TicketService to Retrieve all Tickets of a Certain View

Using TicketService to find ticket of a view

Li st <Ti cket> nylist = ticketService.getByViewnew ViewCriteria(
vi ewSer vi ce. get ByNane(" hel pdesk_active_tickets"),
Vi ewAssi gnnment Par anet er . al | Assi gnedTi ckets(),

Vi ewGr oupPar anet er. al | Ti ckets(),
vi ewOr der Par anet er . addByNane(true)))

Example 5: Using EngineerRoleRelationService to Send an E-Mail to All
Engineers of a Role

Using EngineerRoleRelationService to send an e-mail to all engineers of arole
/1 Send e-nmil to all engineers of a regular role
def mail = new Mail ()

mai | . set To(engi neer Rol eRel ati onServi ce. get Engi neer sWt hRol es(r ol eServi ce. get ByName(" Super vi sor"
))*.email.join(","))

mai | . set Subj ect ("Ti cket (${ticket.nane}) -- Escal ation!")
mai | . set Text (wor kf | owApi . render Tenpl at e("Ti cket escal ati on note to supervisor"))

mai | . send()

130 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.3 Working With Data Fields

® Working With Data Fields
® Introduction to Data Fields
® ConSol*CM Version 6.8 and Older
® ConSol*CM Version 6.9 and Higher
® Data Types for Data Fields
® Custom Fields for Ticket Data
® Most Important Methods for Access to Ticket Custom Fields
® Retrieve Custom Field Values for Ticket Data
® Simple Data Types
® Enum Values
® Lists
® |ists of Simple Data Types
® |ists of Structs (Tables)
® Setting Custom Field Values for Ticket Data
® Setting Values for Custom Fields with Simple Data Types
® Setting Enum Values
® Setting List Values
® Setting Values in Lists of Simple Data Types
® Setting Values in Lists of Structs
® Fading-in and -out of Custom Field Groups
® Data Fields for Customer Data
® Custom Fields for Customer Data (CM Version 6.8 and Older)
® Retrieving Values
® Setting Values for Customer Data in CM Version 6.8 and Older
¢ Data Object Group Fields for Customer Data (CM Version 6.9 and Higher)
® Most Important Methods for Access to Customer Data Data Object Group Fields
® Retrieving Values for Customer Data in CM Version 6.9 and Higher
® Setting Values for Customer Data in CM Version 6.9 and Higher
® Setting Values for Data Object Group Fields with Simple Data Types
® |ists
® Setting Values in a List of Structs for Customer Data
® Convenience Methods for Access to Customer Data in CM Version 6.9 and Higher
® Using Data Fields for (Invisible) Variables

6.3.1 Introduction to Data Fields

The access to data fields is an essential part of ConSol*CM programming. It is potentially required in all
scripts of the system, workflow as well as Admin-Tool scripts, no matter of which type. Here, we will set the
focus on workflow programming, but the access to data fields is basically the same in all scripts.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 131

ConSol*CM Version 6.8 and Older

In ConSol*CM versions 6.8 and older, all data fields are called custom fields (CFs). CFs are used to define
the CM data model which consists of ticket data and of customer data. The layout of the Web Client is also
defined by the help of CFs using special annotations (e.g. position).

Examples for custom fields for tickets are:

® priority of the ticket

® escalation date due to an SLA
® printer model

® contract number

Examples for custom fields for customer data are:

® customer name
® zip code

® phone number
® e-mail address

For a detailed introduction to the work with custom fields for ticket data, please refer to the ConSol*CM
Administrator Manual 6.8, section Custom Field Administration.

@ Rules for work with custom fields CM 6.8 and older:

When you work with custom fields, there are two main rules you have to keep in mind:

1. Custom fields are always managed and referenced in custom field groups, e.g. when you
want to retrieve the value of a CF, you use <CF GroupName>.<CF FieldName>

2. You always use the technical unique name to reference a CF or a CF group, not the
localized value.

ConSol*CM Version 6.9 and Higher

Starting with ConSol*CM version 6.9.0, there are two types of data fields:

® custom fields
Used to define ticket data, managed in custom field groups, as known from previous CM versions.
® data object group fields
Used to define customer data as part of the FlexCDM, the new customer data model. Managed in
data object groups.

The work with custom fields of the new (version 6.9 and higher) customer data model (FlexCDM) is
explained in detail in the ConSol*CM Administrator Manual - Customer Data Model 6.9: FlexCDM and in the
ConSol*CM Administrator Manual (Version 6.9), section The CM Customer Data Model: FlexCDM.

132 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

@ Rules for work with custom fields CM 6.9 and higher:

When you work with custom fields and data object group fields, there are three main rules you
have to keep in mind:

1. Custom fields are always managed and referenced in custom field groups, e.g. when you
want to retrieve the value of a CF, you use <CF GroupName>.<CF FieldName>

2. Data object group fields are always managed and referenced in data object groups, e.g.
when you want to retrieve the value of a data object group field, you use <Data Object
GroupName>:<Data Object Group FieldName>

3. You always use the technical unique name to reference a data object group field or a data
object group, not the localized value.

6.3.2 Data Types for Data Fields

A data field is always of a certain data type. As for any variable in programming, it depends on the data type
how you have to handle the value of the field, e.g. a string field cannot be used for calculating numbers, an
enum field needs a specific access method.

The following data types are available in ConSol*CM:

®* boolean
Values: true or false. Depending on the annotation boolean-type, the value is displayed as a check
box, radio buttons, or a drop-down list.

* date
Format and accuracy can be set by annotations.

® enum
For sorted lists. The engineer can choose one of the enum values on the Web Client. Enums and
values have to be created previously within the Enum Administration in the Admin-Tool (see
ConSol*CM Administrator Manual).

® |ist
A data field of this type is the basis for a list (one column) or a table (multiple columns) of input fields
in the Web Client. A table contains lines, each of data type struct (see below). Each line (struct)
contains individual data fields. A simple list consists of a list field which contains the custom fields.

® struct
A data field of this type defines a data structure (line of a table) which groups one or multiple field(s).

®* number
For integer values.

* fixed point number
For numbers with a fractional part, e.g. currencies. You have to enter the total number of digits (
Precision) and the number of digits that fall to the right of the decimal point (Scale).

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

string
For up to

For large

For up to

4000 alphanumeric characters.

long string

objects, unrestricted length.

short string

255 alphanumeric characters.

contact data reference (up to version 6.8)

133

Special data type used internally for referencing the contacts associated with a ticket. Additionally the
contact data type (customer or company) has to be selected in the field below.

MLA field

This data type is used for custom fields that contain hierarchical lists with a tree structure called MLA
(Multi Level Attributes). The name of the custom field will be the name of the new MLA that has to be
defined within the MLA Administration. The group of the custom field has to be referenced when the

MLA is created.

6.3.3 Custom Fields for Ticket Data

In the Admin-Tool, the custom fields for ticket data are defined in the Custom Field Administration section,
file card Ticket data.

. "5 M Admin-Tool @ 1006200 e [——— Lo o)
Custom Field _|[Fie views Help |
Administration e ~ =
A & L[N =280 O S 9
-~ Custom Field Administration
Groups Fields
Filter: .AJI queues - Filter:
Custom Ticket data | Activity Form data
Field Name Data type I
GI’OUDS \ categories MLA field

Name
b helpdesk_standard
Sales_standard

qualification
workaround

feedback boolean

enum

module

quick_response boolean

! Custom Fields in
L+ Selected Custom

feedback

reaction_time ‘dat&

Field Group

queue_fields

am_fields

le/c][¢/lo/M(+] Mo

[e)[C)[#)[o][#] (3]

8 (o]

Annotations of
Selected |
Custom Field
Group

Assigned annotations

Assigned annotations

Name Value Annotation group

show-in-group-section |h'ue \Iaycut

Mame Value

groupable true

Annotation group .
| Annotations of

cmweb-common
| Selected

| —*

sortable true

cmweb-common

reportable true

dwh T~ Custom Field

o]

field indexed transitive

indexing

position 0;0

layout

ltrue

enum field with ticket color

ticket display

= [CM_Administration, Workflow_Admin] I

Fig. 1: ConSol*CM Admin-Tool: Custom Field Administration for Ticket Data

Most Important Methods for Access to Ticket Custom Fields

Three methods are of major importance for programming CF access in CM scripts. They all are methods of
the class Ticket.

134 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

® Ticket.get()
® For retrieving data from a CF.
® Ticket.set()
® For setting data in an already existing CF.
® Ticket.add()
® For calculating with a value within a CF, i.e. to add a certain time range to a date field.
®* For adding a new line in list fields (simple lists and tables).

Another method might be used when a field should be emptied, i.e. when its value should be set to nulf.

® Ticket.remove()
® Sets the value of the field to null.

Retrieve Custom Field Values for Ticket Data

To retrieve data from a custom field in a script, you have to reference it by using the technical names of the
custom field group and of the custom field. The method which has to be used can vary depending on the data
type of the CF.

Simple Data Types

The following examples refer to the custom fields in the figure above.The method which should to be used
(because it is the most convenient way) is:

ticket.get (" <G oup_nane>. <CF_nane>")

. Attention:

Please keep in mind that the getter method for attributes will return the attribute (an object) and not
the value of the object!

For example:

ticket.getField("helpdesk standard”,"reaction_time") will return an AbstractField.
When you want to work with the value of the field use:

def myvalue = ticket.get("helpdesk_standard", "reaction_time")

Or:

def myfield = ticket.getField("helpdesk standard", "reaction_time");

def myvalue = myfield.getValue();

Best:
(the version we recommend for standard use)

def myvalue = ticket.get("helpdesk _standard.reaction_time")

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 135

Retrieve value of boolean CF

def fedb = ticket.get("hel pdesk_standard. f eedback")
/1 will return TRUE or FALSE or NULL because it is a BOOLEAN field

A precondition script of a workflow activity could look like the following code:

Precondition script where boolean value is checked
bool ean vip_info = ticket.get("amfields","vip");

if(vip_info == true){
return true;

}

el se {
return false;

Or shorter:

Precondition script where boolean value is checked, short version

return ticket.get("amfields.vip")

Enum Values

An enum (ordered list) field is a field where the value is one of various list values. For example, a list with
priorities is the basis for an enum field. To retrieve the value of an enum field, you can use the same syntax
as for simple data types. The get method provides the enum list value, the getName() method provides the
string attribute with the name of the value.

Retrieving an enum value for a CF

def prio = ticket.get("hel pdesk_standard. priority")
println "Priority is now" + prio.getNane()

Lists

Lists of Simple Data Types
A list of simple data types consists of a list (= array) which has a value of a simple data type in each line, a
date in our example.The CF of type date has to have the parameter Belongs to which points to the list.

136 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

s ~
£ Editfield [= |
Edit field
- -
£ CM6 Admin-Tool @ embdoku-cmlint.consol.de = @] = i Editfield.
File Views Help
. — y Field details
f W Y @ 2 &= = % ® O D
Name: |conversaﬁon_date| |
[T ry——
Data : |date
Groups Fields = | vl
Belongs to: [oonversab’on_list v]
Filter: | |[AI|I queues v] Filter: | |
Ticket data | Activity Form data
Mame Data type
Name conversation_list list
helpdesk_standard
sales_standard
- Localized values
qualification
workaround Locale Value
feedback m
queue_fields German
am_fields Folish |
order_data
[o][2][#](e][+](+] @ (¢]| [e)[z](#)[c][+] M H/[e] e
o J
Assigned annotations Assigned annotations
Mame Value Annotation group Mame Value Annotation group
show-in-group-section |tme |Iayout
= [CM_Administration, Workflow_Admin]

" v

Fig. 2: ConSol*CM Admin-Tool - CFs for a List of Date Fields

Ticket

Mo login possible

ServiceDesk | Work in progress
100244 Unassigned | Open since 3M9M4 1:10 PM
Priority high Module Web Client
Ask for feedback no

Groups
Conversations/Meetings Orders

conversation_list Date of meeting

2/3/14 iz
3214 i
/26114 iz

Add row
0K | | Cancal |
Fig. 3: ConSol*CM/Web Client - List of Date Fields in a Ticket (Edit Mode)

For access to each date CF within a list use the following lines of code:

Displaying the content of a list of date objects

def convs = ticket.get("conversation_data.conversation_list").each() { conv ->
println "NEXT DATE is :" + conv
println "CLASS of NEXT DATE is " + conv.getd ass()

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 137

WEXT DATE is :2014-02-03 00:00:00.0
CLASS of MEXT DATE is class java.sgl.Timestamp
NWEXT DATE is :2014-03-02 00:00:00.0
CLASS of MEXT DATE i= class java.sgl.Timestamp
NWEXT DATE is :2014-03-26 00:00:00.0
CLASS of MEXT DATE i=s class java.sgl.Timestamp

2014-03-27 12:21:45,274 INFCO [S5TDOUT
2014-03-27 12:21:45,279 INFC [STDCUT
2014-03-27 12:21:45,280 INFO [STDOUT
2014-03-27 12:21:45,280 INFC [S5TDCUT
2014-03-27 12:21:45,281 INFC [STDCUT
2014—03—27 12:21:45,281 INFC [STDCOUT

Fig. 4: Log File - Output for Script

To access a certain line, you can use the following syntax:

Retrieve a certain value from a list of simple data types

def nydate = ticket.get("conversation_data.conversation_list[1]")

Lists of Structs (Tables)

The data construct list of structs is the technical basis for a table structure in the Web Client. The list is the
parent object which contains lines. Each line is an instance of a struct. Each line (struct) contains as many
custom fields (table columns) as required.

List

Struct (line 0)

Struct (line 1)

Struct =(Iine n) |

Fig. 5: List of Structs - Logical Principle

Technically spoken, the list is an array which contains a map (= key:value pairs) in each field.

List = array

List [0] Struct (= Map)

List [1] Struct (= Map)

List [2] Struct (= Map)

List [3] Struct (= Map)

Fig. 6: List of Structs - Technical Principle

To retrieve the data from a list of structs you can work with an iteration over the lines (= structs). In the
following example (from an order system, not displayed in the figure above) we work with a table where ...

® the CF orders_list represents the list.
® the CF orders_listis located within the CF group order_data.
® the iterator strrepresents the struct.

138 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

® the struct has three fields:
® orders_hardware
which represents the article that should be ordered (enum).
® orders _contact
which represents the contact person (string).
® orders_number
which represents the number of articles that should be ordered (integer).

p—

Groups Fields
Fiter: | | Al queves || Fiter: | |
Ticket data | Activity Form data
Mame Data type
Name W
helpdesk_standard orders_struct struct
sales_standard orders_hardware enum
qualification orders_contact string
workaround orders_number number
feedback
queue_fields
am_fields

le)[c][¢][o][+] M m(s]| [o][2](#][e]H [+] H[s]

Assigned annotations Agsigned annotations
Mame Value Annotation group Mame Value Annotation group
show-n-group-section |true |Iayout

Fig. 7: ConSol*CM Admin-Tool - Custom Fields for List

Ticket Accept | Edit | Clone | Print | Display +

2 @’ Mo login possible
= ServiceDesk | Pre-gualify ticket
100244 Unassigned | Open since 31914 1:10 PM

Priority high Module Web Client
Ask for feedback no

Groups Edit | Hide
Orders
orders_list Hardware Contact person Number
Large printers Mr. Miller 2

Medium printers Mrs. Summer 5

=== -

Fig. 8: ConSol*CM/Web Client - Ticket with Filled-in Table

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 139

Retrieve data from a list of structs

def structs = ticket.get("order_data.orders_list").each() { str ->
println("CLASS of LINEis " + str.getd ass())

println("FI ELD VALUE HARDWARE is " + str.orders_hardware. get Name())

println("CLASS of FIELD VALUE HARDWARE is " + str.orders_hardware. get Nane().getd ass())
println("FI ELD VALUE CONTACTis " + str.orders_contact)

println("CLASS of FIELD VALUE CONTACT is " + str.orders_contact.getC ass())

println("FI ELD VALUE NUMBER is " + str.orders_nunber)

println("CLASS of FIELD VALUE NUMBER is " + str.orders_nunber.getd ass())

2014-03-27 11:39:44,425 INFC [STDCUT
2014-03-27 11:39:44,429 INFC [STDCUT
2014-03-27 11:39:44,429 INFO [STDOUT
2014-03-27 11:39:44,430 INFC [STDCUT
2014-03-27 11:39:44,431 INFC [STDCUT
2014-03-27 11:39:44,431 INFO [STDOUT
2014-03-27 11:39:44,454 INFC [STDCUT
2014-03-27 11:39:44,455 INFC [STDCUT
2014-03-27 11:39:44,456 INFO [STDOUT
2014-03-27 11:39:44,456 INFC [STDCUT
2014-03-27 11:39:44,456 INFC [STDCUT
2014-03-27 11:39:44%,457 INFC [SIDOUT
2014-03-27 11:39:44,458 INFC [STDCUT
2014-03-27 11:39:44,458 INFC [STDCUT
L

CLASS of LINE is class com.consol.cmas.common.model.customfield.cfel.Struct
FIELD VALUE HARDWARE is large_printers

CLASS of FIELD VALUE HARDWARE is class java.lang.String

FIELD VALUE CONTACTis Mr. Miller

CLASS of FIELD VALUE CONTACT is class java.lang.S5tring

FIELD VALUE NUMBER is 2

CLASS of FIELD VALUE NUMBER is class java.lang.Long

CLASS of LINE is class com.consol.cmas.common.model.customfield.cfel.3truct
FIELD VALUE HARDWARE is medium printers

CLASS of FIELD VALUE HARDWARE is class java.lang.S5tring

FIELD VALUE CONTACTis Mrs. Summer

CLASS of FIELD VALUE CONTACT is class java.lang.S5tring

FIELD VALUE NUMBER is 5

CLASS of FIELD VALUE NUMBER is class java.lang.Long

Fig. 9: Log File - Script Output

Setting Custom Field Values for Ticket Data

To set values for ticket CFs, you follow the same principle as for getting data: use the CF group name and
the technical name of the CF as a reference. Of course, additionally, the new value is required. And of
course it has to be of the correct data type.

ticket.set("<G oup_nane>. <CF_nane>", <val ue>)
Setting Values for Custom Fields with Simple Data Types
Set a CF value for a date CF

ticket.set("fields.reaction_tinme", new Date());

When you work with number or date fields, you can even calculate with the CF values in a very comfortable
way, see following example.

Calculate with value of date CF

//add 24 hours (in mllis) to current field value
ticket.add("fields.deadline", 24*60*60*1000);

Setting a value to null (i.e. emptying the field) is the same as removing the value:

140 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Setting a CF value to null

ticket.set("fields.number Of Enpl oyees", null)

Or shorter:

Setting a CF value to null viaremoving the value

ticket.remove("fiel ds. nunber O Enpl oyees")

Setting Enum Values
To set an enum value use the following syntax. Of course, the new value has to be present in the ordered list
(enum) which is referenced by the CF.

ticket.set ("G oup_nane. CF_nane", <techni cal name of val ue>)

Setting an enum value

ticket.set("fields.priority", "URGENT");

Setting List Values

Setting Values in Lists of Simple Data Types
When you want to add a line, you can simply use the add method:
Adding a new line in a list of strings

ticket.add("fields.tags", "my new String")

When you want to refer to a certain value to set a new value for it, you have to use the syntax for an array:

Setting a value in a list of strings

ticket.set("fields.tags[last]", "consol cnb")

Setting Values in Lists of Structs

Working with structs, you always have to work with the key of the value you would like to add or set. When
you want to add a new line, you have to build a new struct as new line. The set method can be used one
after another for each new field.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 141

Adding a new line in a list of structs

ticket.add("order_data.orders_list", new Struct().set("tA_Id",
id).set("orders_hardware", nynewhar dwar e_nodel). set ("orders_contact",
t henewcont act nane) . set ("orders_nunber", t henewnunber)

Fading-in and -out of Custom Field Groups

A custom field group (CF group) can be faded-in (made visible) and faded-out (made invisible) using a
workflowApi method. This works for CF groups which are displayed in the main ticket data section as well as
for CF groups which are displayed in the tabbed section.

A typical use case is a CF group which is invisible at first (CF group annotation group-visibility = false) and is
faded-in when the engineer needs to work with the data in the process. For example, a CF group which
contains reasons for the dismissal of a request is only displayed (faded-in) when the engineer has used the
workflow activity Dismiss ticket This prevents an information overload of the ticket.

Fade-in a CF group

wor kf | owApi . set GroupProperty(, CF_Group_Di smissal", G oupPropertyType. VI SI BLE, "true"

To fade-out some CF groups, e.g. when the ticket has been qualified and some of the CF groups will no
longer be required in the process, use code according to the following example:
Fade-out a CF group

wor kf | owApi . set Gr oupProperty(" CF_G oup_Har dwar el nf 0", G oupPr opertyType. VI SI BLE, "f al se")
wor kf | owApi . set Gr oupProperty(" CF_G oup_Sof t war el nf 0", G oupPr opertyType. VI SI BLE, "f al se")

6.3.4 Data Fields for Customer Data

Custom Fields for Customer Data (CM Version 6.8 and Older)

In CM version 6.8 and older, customer data are defined in the Admin-Tool, section Custom Field
Administration, tab Customer data.

142 ConSol*CM Process Designer Manual (CM up to version 6.9.3)
r
i CM6 Admin-Tool @ cmb-demointconsalde ———— — — ==
Custom Field File Views Help
Administration = =P Y B ~
4 =|[|-. 8o o N)
-+ Custom Field Administration
Groups Fields
Filter: All queues Filter:
‘I Ticket data | Customer data | Activity Form data . .
ame ata type -
Custom Field M [Mame . fCusm‘m FIZMS
Grouns for 1l S |+ or selecte
ps for mpany e Custom Field
Customer Data 0 udget boolean |17
lcomment_ficid short string Group
\companyRef contact data reference]
| decisian boslean
division short string
domsin erum
e E]I domain_Jabel short string
email short string
Assigned annotations I o Feartars
Name Value Annotation group = =

Annotations contact-templatecontact-ticket-page customer-ticketpage-template |contact-templates @ E] E]) @
for selected contact-template-default customer -standard-template lcontact-templates
Custom Field ~——| Jcontact-template-dragged contact-dragged-template lcontact-templates
Group ntact-template -email contact-email-template: lcantact-templates Assigned annotations

contact-template quick-search search-customer-template [contact-templates Annotations for
contact-template-search contact-search-template lcontact-templates Name Value Annotation group
contact-template-ticket-ist contact-ticketiist-template. |contact-templates sortable ftrue |emweb-common selected .
contact template ticket reference contact ticketreference template _|contact-templates visibiity edit lcommon Custom Field
contact-template ticketsearch contact-ticketsearch-template_|contact-templates reportable rue idwh «
contact-template-workspace-favourite |contact-workspace-template |contact-templates field indexed transitive jindexing
chow -contact-in-ticket-ist true layaut jorder-in-result 1 layout
contact history template name customer-history-template ficket contact refation_| [fpasition o1 Jlayout
uritis a contact true ocket contact refaton |

& [CM_Administration]

Fig. 10: ConSol*CM Admin-Tool - Custom Field Administration for Customer Data (CM Version 6.8 and

Older)

The customer data can comprise one level (only a contact level) or two levels (contact = customer level and
company level). l.e. you have to deal with two objects maximum. The names of the objects depend on the
names which have been assigned to them in the Admin-Tool. In the example (see figure above), the contact
(= customer) object is named customer and the company object is named company.

Retrieving Values

Each object within the customer data represents a unit (i.e. an instance of the Unit class). In scripts, the unit
(customer or company) has to be retrieved, before you can work with it. If the customer data model contains
two levels (contact = customer and company), you will see a CF in the contact object which has the data
type contact data reference. This is the link between the contact and company object.

Unit contact = ticket.getMai nContact()

Unit conpany contact.get (' <contact data reference_field>")
For all other CFs, the access to data is based on the same principle as for ticket data.
Type t = contact.get (' <CF_nanme>')

For example:

Retrieving customer data from a CF

def fn = custoner.get("firstnane")

Setting Values for Customer Data in CM Version 6.8 and Older

company. set (' <CF_nane>', <new val ue>)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 143

Setting values for a company in a list of structs

ticket.set("person_data.responsibl eConsultants", new Struct[]{

new Struct().set("lastName", "MIler").set("email", "mller@onsol.cont),
new Struct().set("lastName", "Smith").set("email", "smth@onsol.conl),
new Struct().set("lastNanme", "Burger").set("email", "burger@onsol.cont)
IOF

Data Object Group Fields for Customer Data (CM Version 6.9 and
Higher)

In CM version 6.9 and higher, the customer data object groups are part of the new customer data model (
FlexCDM) and are defined in the Admin-Tool, section User attributes, file card Customer data model.

¢ CM6 Admin-Tool @ 1006200 R Y —— S ——— ool

. File Views Help |
User Attributes ' I =
==

A X % 7 W[

& User attributes

N=ED OO c B 9

Customer groups | Customer data model | Data object actions | Customer roles | Data object relations | Engineer functions I Prnjedsl

Customer data models Data object group fields
comparty “| || Filter:
= company |
f i SEUE Type Data Object Group
-5 customer !
 DirectCustomersModel company_name short string |~ Fields for selected
il irCustCompany company._number short string '/' Data Object Group
| i DrCustCompanyData address string
f 5 DirCustCustomer
: - DirCustCustomerData I | e short string
- & ResellerModel country Enum
EeselerCompany url short string
Data Object phone_frontdesk short string

= ResellerCompany_ServiceContractData
- ResellerCompanyInternalResp
[=-ResellerCustomer

= ResellerCustomerData =

[ojC)[«/c]M([¢] E(s)|le]

Groups for one 7]
Data object

#)[o][#][¢] 8 (o]

Annotations Assigned annotations o Annotations for
for selected selected Data
Data Object Name Value Annotation group Name Yalue Annotation group L Obiect GI’OUD Field
e
a G jec ow-n-group-section [true layout field indexed |transitive |indexing
roup position [z layout
I

‘ i [CM_Administration, Workfiow_admin] | |

Fig. 11: ConSol*CM Admin-Tool - Custom Field Administration for Customer Data (CM Version 6.9 and
Higher)

The fields, which were called custom fields in the customer data model of previous versions, are now called
data object group fields. However, the principle you use to retrieve and set values for the data fields is
principally the same as in CM version 6.8 and older.

Most Important Methods for Access to Customer Data Data Object Group Fields

Three methods are of major importance for programming access to data object group fields (DOGF) in CM
scripts. They all are methods of the class Unit.

® Unit.get()
® For retrieving data from a DOGF.

144 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

® Unit.set()
® For setting data in an already existing DOGF.

® Unit.add()
® For calculating with a value within a DOGF, i.e. to add a certain time range to a date field.
® For adding a new line in list fields (simple lists and tables).

Another method might be used when a field should be emptied, i.e. when its value should be set to null:

® Unit.remove()
® Sets the value of the field to null.

Retrieving Values for Customer Data in CM Version 6.9 and Higher

Because the name of a data object group field might appear in more than one data object group, the name
of the data object group has to be provided when accessing the customer data. For example, in the
customer data model shown in the figure above, the data object groups ResellerCompanyData and
DirCustCompanyData could have a data object group field named city. Therefore, it is important to mention
group name and field name.

Please use the following syntax:

unit.get("groupl: nane")

For example:

Retrieving afield value for a company

def mycity = conpany. get ("Resel |l er ConpanyData: city")

There are various objects and methods to work with data on different levels of the FlexCDM. Please see the
following example where several common objects and methods have been applied. It is an Admin-Tool script
which is accessed from a workflow activity. The only purpose is to display some data of the ticket's main
customer. The following figure shows the Java objects used in the script and the ConSol*CM objects in the
Admin-Tool which are referenced.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 145

& ther attrknses def mcont = ticket.getMainContact ()
Customer groups | Customer data model | Data object actions | Customer roles | Data objes
Customer groups
It (A1 customer data modeis ‘;;f#{mcont.getCustomerGroup()|
| Name = Customer data model
DirectCustomers Dir: el |
MyCustomerGroup BasicModel

mcont.getCustomerDefinition () |

E &° ResellerModel

.:] -, ResellerCompan
I = ResellerComh mcont.getDefinition () |

i = ResellerCompany_ServideContractData
: b 2 ResellerCompanyInternalR:
[J-ResellerCustomer
i.. @9 ResellerCustomerData

|_. User atirbutes.
Cuaboner gropn| Custoner data madel preee: I e | [Engrer furcsons [Projects | = —_
| = e | mcont. get (,ResellerCompanyData:city™)
[S g antm Lo ome iworsemy
i DreciCusiomersModel company_number jshort sring
| DrCussConpany padest]
| DrCumtCompanyOats = Lot sirng |
I[1]| oo mecen o oo
1B | C— Hotsiy
e i e
.b i |[[0])[0][#][@] 4]+ =
' L B n.xmdm-n&-w n
i RtselerCuinomerData HName = Ve Annotation group

Fig. 12: ConSol*CM Customer Objects in Script and Admin-Tool

@ Information:

Please keep in mind that you might also use the short notation like unit.definition.type for getter
methods like unit.getDefinition().getType().

146 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Admin-Tool script for displaying customer data

i mport com consol . cmas. cormon. nodel . ti cket. Ti cket
i mport com consol . cmas. comon. nodel . custonfi el d. met a. Unit Definiti onType

def ticket = workfl owApi.getTicket()

def nctont = ticket.get Mai nCont act ()

println "CustonmerGoup of main contact is now " + ntont.getCustomer G oup().get Name()

println "Customer definition of nain contact is now " + ntont.getCustonerDefinition().getName()

println "UnitDefinition of main contact is now" + ntont.getDefinition().getNane()

def custnmod = ntont. get CustonerDefinition().getName()
/1 println "CUSTMOD is now " + custnod

def cityfield

switch (custnmod) {

case "BasichMdel" : cityfield = "conmpany:city";

br eak;

case "DirectCustomerMdel " : cityfield = "DirCust ConpanyDat a: di r _cust _conpany_city";
br eak;

case "ResellerMdel": cityfield = "Resel |l er ConpanyData:city";

br eak;

println "CITYFIELD is now " + cityfield

def utypel = ntont.getDefinition().getType()
def utype2 ncont. definition.type

println "UTYPEL is now " + utypel
println "UTYPE2 is now " + utype2

def conpany = ntont
if (utype2 == UnitDefinitionType. CONTACT) {

conpany = ntont.get ("conpany()")

def nycity = conpany.get(cityfield)
printin " CITY is now" + nycity

For the following data set the log file output is shown below. The Reseller model of the figure above is used.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Customers

Main
ResellerCustomer

[Skywalkcer [Lea

| lea@localhost de | 123
vip_person

| -

oK Cancel
ResellerCompany

Groups

ResellerCompanyData Service Contract Data

| ConSal*

Add | Hide

Internal responsibilities

| Franziskanerstralie 38 | Minchen

[21869

| Gemany El |

[+4989 45841-0

OK Cancel

Fig. 13: ConSol*CM/Web Client - Customer Data Set

2014-03-27
2014-03-27
2014-03-27
2014-03-27
2014-03-27
2014-03-27
2014-03-27
2014-03-27
=

16:09:21,739 INFC [STDOUT
16:09:21,739 INFC [STDOUT
16:09:21,740 INFC [STDOUT
16:09:21,743 INFC [STDOUT
16:09:21,744 INFC [STDOUT
16:09:21,750 INFC [STDOUT
16:09:21,751 INFC [STDOUT
16:09:21,758 INFC [STDOUT

Fig. 14: Log File - Script Output

CUSTMOD is now ResellerModel

UTYPEl is now CCNTACT
UTYPEZ is now CCNTACT
CITY i= now Minchen

Retrieving a value from a list of structs using index notation

String

firstNane = conpany. get ("responsi bl eConsul tants[0].firstNane");

Setting Values for Customer Data in CM Version 6.9 and Higher

Setting Values for Data Object Group Fields with Simple Data Types

The set and add methods work as described for ticket custom fields. For example:

Set and add values for a data object group field of type integer

/1 set nunmber field
conpany. set (" nunber & Enpl oyees", 1);

/ladd 1 to field value,

conpany. add(" nunber O Enpl oyees", 1);

afterwards the value of the field is 2

CustomerGroup of main contact is now Reseller
Customer definition of main contact i= now ResellerModel
UnitDefinition of main contact i=s now ResellerCustomer

CITYFIELD i= now ResellerCompanyData:city

147

148 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Lists
Setting Values in a List of Structs for Customer Data

Creating a new list of structs, version 2

conpany. set ("responsi bl eConsul tants", [

new Struct().set("lastName", "MIler").set("email", "mller@onsol.cont),

new Struct().set("lastNanme", "Smith").set("email", "smth@onsol.conl),

new Struct().set("lastNanme", "Burger").set("email", "burger@onsol.conl)
1

Adding anew line in a list of structs for company data

conpany. add("responsi bl eConsul tants", new Struct().set("lastNane", " Nowi tzki

"dnowi t zki @onsol . us"));

Setting a value in alist of structs using index notation

conpany. set ("responsi bl eConsul tants[0] . firstName", "John");

Removing a struct (= line) from a list of structs (= table)

conpany. set ("responsi bl eConsul tants[last]", null);

").set("emil",

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 149

Convenience Methods for Access to Customer Data in CM Version 6.9
and Higher

Convenience methods for access to customer data
Unit mai nContact = ticket.getMiinContact();

/1 "conpany" extension returns conpany for contact
Unit conpany = nmai nContact. get("conmpany()");

/1 it is also possible to set conpany using "conpany" extension
mai nCont act . set ("conpany()", conpany);

/'l "contacts" extension returns |list of contacts for conpany
Li st contacts = conpany. get("contacts()");

/1 "tickets" extension returns list of tickets for contact or conpany
List tickets = conpany.get("tickets()");
tickets = mainContact.get ("tickets()");

/'l extensions can be chained
I nteger count = contact.get("conmpany().contacts()[0].tickets()[count]");

/] parenthesescan be omitted, but it is not recommended (possible collision with name of group
or field)

count = contact.get("conpany.contacts[O0].tickets[count]"); // here "conpany" is not extension
but name of field

6.3.5 Using Data Fields for (Invisible) Variables

Sometimes it is necessary to work with variables which are not used as values for GUI-visible custom fields
or data object group fields, but which are only used as containers for internal programming variables.

Those of you who know how to program ConSol*CM5 workflows know those containers as global variables.
In ConSol*CM6, you can achieve the same goal by creating regular custom fields (for ticket data) or data
object group fields (for customer data) with the required data type and setting the field to invisible. This has
to be done by using the annotation visibility = none. You can even let the variable be visible during the
development of the process and control the field's value. Then you can set it to invisible when the system is
handed-over to QA and users.

150 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.4 Sending E-Mails

® Sending E-Mails
® Introduction to Sending E-Mails
® Important Methods
® ConSol*CM Version 6.8 and Older
® ConSol*CM Version 6.9 and Higher
® Examples
® Sending an Automatic Acknowledgment of Receipt to the Customer When He/She Has
Opened a Ticket
® ConSol*CM Version 6.8 and Older
® ConSol*CM Version 6.9 and Higher
® Sending an E-Malil to the Engineer When a Certain Escalation Level Has Been Reached
® ConSol*CM Version 6.8 and Older
® ConSol*CM Version 6.9 and Higher
® Sending an E-Mail to a Customer Integrating the Queue-Specific Mail
Script
® Sending an E-Mail to All Contacts of the Ticket
® Sending an E-Mail to Each Contact in a List of All Contacts of the Ticket

6.4.1 Introduction to Sending E-Mails

The capability of receiving and sending e-mails is a core feature of ConSol*CM. Please read the detailed
introduction in the ConSol*CM Administrator Manual for information.

In this section we will describe how you can write scripts to send e-mails from the workflow. This is very
useful for use cases like the following:

® You want to send an automatic acknowledgment of receipt to the customer when he/she has opened
a ticket.

® You want to inform the engineer and his supervisor when the highest escalation level has been
reached.

® You want to inform the customer that a problem has been solved (and how).

Usually, you do not write the text of the e-mail into the script but you work with e-mail templates. So please
read the detailed introduction to the ConSol*CM Template Designer in the ConSol*CM Administrator Manual
first.

6.4.2 Important Methods

ConSol*CM Version 6.8 and Older
Use workflowApi.sendEmail().

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 151

ConSol*CM Version 6.9 and Higher

Use an object of class Mail.

Here you can define all required parameters for an e-mail and you can configure the Mail object to use the
queue-specific e-mail default script. This is a script which processes the e-mail before it leaves the CM
system. This kind of script can be assigned to a queue (E-Mail script, see section Queue Administration in
the ConSol*CM Administrator Manual). To use such a script can prove helpful, for example when you want
to set a REPLY TO address which is not the standard REPLY TO address (stored in a system property).

6.4.3 Examples

Sending an Automatic Acknowledgment of Receipt to the Customer
When He/She Has Opened a Ticket

ConSol*CM Version 6.8 and Older

This script might be placed in one of the first activities of the workflow.

/1 fetch main contact of the ticket
def contact = ticket.getMai nContact ()

/] fetch e-nmil address = Custom Field of contact
def contact_e = contact.get("email")

/] build e-nmail text using a tenplate which is stored in the Tenpl ate Desi gner
def text = workfl owApi.render Tenpl at e(" Acknow edgenent _of _recei pt")

/1 fetch the REPLY TO address which is stored in a system property
def replyto = configurationService. getVal ue("cmweb-server-adapter","mail.reply.to")

/1 set the subject of the e-mail, the ticket nunber with the correct Regul ar Expression
/'l has to be set for correct recognition of incoming e-nmails for the ticket
def subj = "Your case has been registered as Ticket (" + ticket.getld() + ")"

/1 send out the e-mail
wor kf | owApi . sendEnmi | (contact _e, subj,text,replyto, null)

ConSol*CM Version 6.9 and Higher
This script might be placed in one of the first activities of the workflow.

152

/] create new nail object
def mail = new Mail ()

/1l fetch main contact of the ticket

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

def mai ncontact = ticket.getMinContact()

/] fetch e-nmail address of the main contact. The data object group field has to be addressed
usi ng data obj ect group name:data object group field nanme
def toaddress = nmincontact.get (" M/Custoner Dat albj ect G oup: enmi | ")

/1 put the e-mail TO address into the Ml object

mai | . set To(t oaddr ess)

/1 fetch the REPLY TO address, this is stored in a system property
def replyaddress = configurationService. getVal ue("cmweb-server-adapter","mil.reply.to")

/1 put the e-mail REPLY TO address into the Ml object

mai | . set Repl yTo(r epl yaddr ess)

/] build e-nmail text using a tenplate which is stored in the Tenpl ate Desi gner
def text = workfl owApi.render Tenpl at e(" Acknow edgenent _of _recei pt")

/1 put the e-mail text into the Ml object

mai | . set Text (text)

/] create the subject of the e-mail, the ticket nunber with the correct Regul ar Expression has
to be set for correct recognition of incomng e-mails for the ticket

def ticketname = ticket.get Nane()

def subject = "Your case has been registered as Ticket (" + ticketnane + ")"

/] put the subject into the Miil object
mai | . set Subj ect (subj ect)

/1 send out the e-nai
mai | . send()

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 153

Sending an E-Mail to the Engineer When a Certain Escalation Level Has
Been Reached

This script might be placed in an automatic activity which is connected to a time trigger. The time trigger
measures the escalation interval. When the deadline has been reached, the trigger fires and the ticket enters
the automatic activity.

ConSol*CM Version 6.8 and Older

/1 fetch current engineer of the ticket
def eng = ticket. get Engi neer ()

/1 fetch e-nmil address = Standard Data Field of engineer, check if there is a current engi neer
to avoid Nul | Poi nterException
def eng_email = eng?.getEnmail ()

/1 build e-mail text using a tenplate which is stored in the Tenpl ate Designer
def text = workfl owApi.render Tenpl at e(" ESCALATI ON_Mai | ")

/'l fetch the REPLY TO address which is stored in a system property
def replyto = configurationService. getVal ue("cmweb-server-adapter","mail.reply.to")

/1 set the subject of the e-mail, the ticket nunber with the correct Regul ar Expression has to
be set for correct recognition of incomng e-mails for the ticket
def subj = "ESCALATION Level 3 REACHED! Ticket (" + ticket.getld() + ")"

/1 send out the e-mail
wor Kf | owApi . sendEmai | (eng_emai |, subj, text,replyto, null)

154 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

ConSol*CM Version 6.9 and Higher

/] create new nail object
def mail = new Mail ()

/'l fetch current engineer of the ticket and set it as e-nmil receiver
if (ticket.engineer){
mai | . set Tar get Engi neer (ti cket. engi neer)

/1 fetch the REPLY TO address, this is stored in a system property
def replyaddress = configurationService. getVal ue("cmweb-server-adapter”,"mail.reply.to")

/1 put the e-mail REPLY TO address into the Ml object
mai | . set Repl yTo(repl yaddr ess)

/1 build e-mail text using a tenplate which is stored in the Tenpl ate Designer
def text = workfl owApi.render Tenpl at e(" ESCALATI ON_Mai | ")

/1 put the e-mail text into the Ml object
mai | . set Text (text)

/'l create the subject of the e-mail, the ticket nunber with the correct Regul ar Expression
has to be set for correct recognition of incomng e-mails for the ticket

def ticketnanme = ticket.get Nanme()

def subject = "ESCALATION Level 3 REACHED! Ticket (" + ticket.getld() + ")"

/1 put the subject into the Mil object
mai | . set Subj ect (subj ect)

/1 send out the e-nai
mai | . send()

Sending an E-Mail to a Customer Integrating the Queue-Specific Mail Script

This is the same script as shown in the example above, but the queue-specific mail script will be used. For a
detailed explanation of this type of script, refer to the ConSol*CM Administrator Manual, section Admin-Tool
Scripts.

As an effect, the outgoing e-mail will pass through the script before it leaves the CM system. E-mail
parameters, like CC, BCC, or REPLY TO can be changed.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 155

/] create new nail object
def mail = new Mail ()

/1 fetch main contact of the ticket
def mai ncontact = ticket.getMinContact()

/] fetch e-nmail address of the main contact. The data object group field has to be addressed
usi ng data obj ect group name:data object group field nanme
def toaddress = nmincontact.get (" M/Custoner Dat albj ect G oup: enmi | ")

/1 put the e-mail TO address into the Ml object
mai | . set To(t oaddr ess)

/1 fetch the REPLY TO address, this is stored in a system property
def replyaddress = configurationService. getVal ue("cmweb-server-adapter","mil.reply.to")

/1 put the e-mail REPLY TO address into the Ml object
mai | . set Repl yTo(r epl yaddr ess)

/] build e-nmail text using a tenplate which is stored in the Tenpl ate Desi gner
def text = workfl owApi.render Tenpl at e(" Acknow edgenent _of _recei pt")

/1 put the e-mail text into the Ml object
mai | . set Text (text)

/] create the subject of the e-mail, the ticket nunber with the correct Regul ar Expression has
to be set for correct recognition of incomng e-mails for the ticket

def ticketname = ticket.get Nane()

def subject = "Your case has been registered as Ticket (" + ticketnane + ")"

/] put the subject into the Miil object
mai | . set Subj ect (subj ect)

/1 Mail should use the e-mail script which is configured for the queue
mai | . useDef aul t Script ()

/'l send out the e-mail
mai | . send()

Sending an E-Mail to All Contacts of the Ticket

This will send one e-mail with all customers (that have an e-mail address) as receiver. Please note that this
is a simple example which demonstrates the use of a list. The REPLY TO address is not set, so answers to
the e-mail would not be appended to the ticket.

def custEmails = workfl owApi.getContactList()*.get("email").findAII{it !'=null}.join(",")
wor kf | owApi . sendEnai | (custEmails, "Confirmation", "Good afternoon, we received your request!",
null, null)

156 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Sending an E-Mail to Each Contact in a List of All Contacts of the Ticket

This will send one e-mail to every single customer (that has an e-mail address). Please note that this is a
simple example which demonstrates the use of a list. The REPLY TO address is not set, so answers to the
e-mail would not be appended to the ticket.

wor kf | owApi . get Cont act Li st (). each {

def custEmmil = it.get("email")

if (custEnmil) workfl owApi.sendEmail (custEnmil, "Confirmation", "Good afternoon, we received
your request!", null, null)

}

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 157

6.5 Working with Path Information

® Working with Path Information
® Introduction

® Retrieve Path Information for a Workflow Element
® Examples for the Use of Path Information

® Example 1: Deactivate and/or Re-Initialize a Time Trigger

6.5.1 Introduction

Like a file in a file system on a computer, every element of a workflow can be addressed using the path of

this element. This might be required when you want to work with the element within a workflow script. A path
represents the hierarchical structure of the workflow.

defaultScope/Service_Desk

)
Service Desk @

Pec-qualify ticket

E-mail received
o . FIF customer?

defaultScope/Service_Desk/New_ticket —————————=>

(=]]
ticket
o
. o
defaultScopel/Service_Desk/New_ticket/New_|T_ticket | ——=» nev 17 vicres - [Check SLA D I
o
Lo [}
»
r {»} o
defaultScope/Service_Desk/Work_in_progress —— =, .
Dace has been zeached
: Ticket om hold
L1 8
Inform teas lead Re-activate ticket
defaultScope/Service_Desk/Work_in_progress/ e et o oo
Ticket_on_hold/Put_ticket_on_hold o e — . % -
] .
Confirmed: e-mail | Provide bonus or .
::::: veucher
o o o. u

Fig. 1: ConSol*CM Process Designer - Path Information (Example: Activities and Scopes)

6.5.2 Retrieve Path Information for a Workflow Element

You can copy the path of an element by clicking on the element with the right mouse tab and selecting Copy
adornment's path to clipboard.

158 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Add successor activity
Add successor decision

Copy adornment's path to clipboard

. take action! E-mail
ok - no action
not yet read!

Fig. 2: ConSol*CM Process Designer - Copying the Path of a Workflow Element

6.5.3 Examples for the Use of Path Information

Example 1: Deactivate and/or Re-Initialize a Time Trigger

A typical case for the use of path information is the re-initialization of a time trigger, e.g. if you want to
measure the time after an e-mail has been received and make sure that the e-mail is taken care of within a
period of 10 minutes maximum. That means you have to use a time trigger over and over again and
re-initialize it after each e-mail which has been received by the ticket.

When the ticket is created, the time trigger has to be deactivated. The following code would be used:

...

Deactivate a time trigger

wor kf | owApi . deact i vat eTi mer (" def aul t Scope/ Servi ce_Desk/ Ti neTri gger 1")

...

Re-initialize time trigger

wor kf | owApi . reinitializeTrigger("defaultScope/ Service_Desk/Ti meTrigger1")

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 159

6.6 Working with Calendars and Times

® Working with Calendars and Times
® Introduction
® (Calculating with Dates and Times without a CM Business Calendar
® Example: Setting a Time Trigger Time with Dynamic Time Range
® (Calculating with Dates and Times Using a CM Business Calendar
® Example: Using a Time Trigger with a Business Calendar to Calculate Escalation Time
(CM 6.9)

6.6.1 Introduction

Calculating dates and times plays an important role in ConSol*CM workflow programming. For a time trigger
(see section Time Triggers), the exact point in time when it is supposed to fire can be set via script. This
adds various possibilities in controlling escalation times, reminders for engineers, and other active
components of a ConSol*CM process. Examples for potential calculations with dates and/or times are:

® escalation dates with time triggers
® date fields, like a desired (or required) deadline

When you calculate a date and/or time, you have to decide if a business calendar should be used or not. A
business calendar defines working hours for a process. It is defined using the Admin-Tool and assigned to
one or more gqueues.

For example, the service desk team might have working hours from 8 to 6 for 6 days a week, whereas the
administration team works on a 9-to-5 basis, 5 days a week. Using a CM business calendar makes sure that
an escalation will not be set during spare time and that non-working hours are not included into the
calculation of the elapsed escalation time. Please refer to the ConSol*CM Administrator Manual for a
detailed introduction about business calendars.

On the other hand, there are examples, when a business calendar is not required but the pure time based on
the regular calendar should be used. For example, when it is required to get back to a customer three weeks
after the initial contact. The following paragraphs will show you examples for both use cases.

160 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

©@ How the time of a time trigger with calendar is calculated:

1 day means 24 hrs of absolute time, it has nothing to do with the use of a calendar. The calendar
only plays a role when the time trigger is activated, then the 24 hrs, i.e 86400000 milliseconds, will
be taken as business calendar input (if the calendar is enabled).

Example:

When we have as trigger time 1 day = 24 hrs without calendar, the 24 hrs are calculated like
regular time, so the escalation will fire one day later at the same time.

In contrast: When we use a calendar (with, for example, 7 work hrs per work day), the 24 hrs will
be split-up according to the calendar, resulting in the firing event more than 3 days later (24 hrs = 3
X 7 hrs + 3 hrs).

6.6.2 Calculating with Dates and Times without a CM Business
Calendar

Example: Setting a Time Trigger Time with Dynamic Time Range

Depending on the priority, the time trigger for an escalation is configured:

Setting time for a time trigger

/1 prio is 'nedium

def escal ationTinme =

configurationService. get Val ue("cust om myconpany-properties","escal ati on.tinme. medi uni)
def escalationTineMIlisecs = escalationTinme * 60 * 1000L

trigger.setDueTi ne(escalationTineMI||isecs)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 161

6.6.3 Calculating with Dates and Times Using a CM Business
Calendar

Example: Using a Time Trigger with a Business Calendar to Calculate
Escalation Time (CM 6.9)

Escalation !!! Deadline

G

reached in 4 hrs!

Fig. 1: ConSol*CM Process Designer - Time Trigger for Escalation 4 Hours before Deadline

Script for time trigger for escalation 4 hours before deadline

def deadl = ticket.get("serviceDesk fields.desiredDeadline")

/'l 4hrs before deadline the escal ation should be set

/1 business cal endar should be used

/1 ServiceDeskCal endar is assigned to queue ServiceDesk, this is transparent here

def now = new Date()

/1 time required in mllisecds
def four_hours = -4*60*60*1000L

/1 calculate escal ati on date
def escal Date = Busi nessCal endar Uti | . get Busi nessTi ne(deadl, four_hours, ticket.queue. cal endar)

/1 calculate and set due tine

def dueTine = escal Date.time - now tine
trigger. set DueTi ne(dueTi me)

162 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.7 ConSol*CM Process Designer Manual - Working
with Object Relations

6.7.1 Working with Object Relations

In ConSol*CM, you can work with two types of relations:

Relation type Explanation

Ticket Relations Hierarchical or one-level relations between two
tickets, see section Working with Ticket Relations

Customer Relations Relations between customer data objects, i.e.
contacts and companies, see section \Working with
Customer Relations (Data Object Relations)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 163

6.7.2 Working with Ticket Relations

® Working with Ticket Relations
® Introduction
® Simple Ticket Relation without a Hierarchy
® Example: Creating a Simple Relation between Two Tickets
® Master-Slave Relations
® Example: Creating a Master-Slave Relation between Two Tickets
® Syntax: Finding All Slave Tickets
® Parent-Child Relations
® Example 1: Creating a New Child Ticket as Child of Current Ticket
® Example 2: Finding the Parent Ticket of a Ticket
® Example 3: Finding All Child Tickets of a Ticket
® Example 4: Finding All Brother Tickets (Other Child Tickets) of the Same Parent Ticket
* |mportant Methods for the Work with Ticket Relations

Introduction

Relations between tickets can help to model your business processes in a very efficient way.
ConSol*CM offers three types of relations:

® Simple ticket relations
Non-hierarchical, simple reference. Each ticket can have any number of references.
A simple ticket relation can be built by an engineer using the Web Client or by a programmer using
the ConSol*CM programming interface.
In both cases, a reference can only be established between two existing tickets.

®* Master-Slave relations
Hierarchical. A master ticket can have several slave tickets. A slave ticket always has exactly one
master ticket.
This construct can be built by an engineer using the Web Client or by a programmer using the
ConSol*CM programming interface.
A Master-Slave relation can only be established between two existing tickets, i.e. the tickets both
have to exist first, then a Master-Slave relation can be built to connect them.

® Parent-Child relations
Hierarchical. A parent ticket can have several child tickets. A child ticket always has exactly one
parent ticket.
This construct can only be built and manipulated using the ConSol*CM programming interface.
A Parent-Child relation can be built between existing tickets. Also a new child ticket can be created
during the process.

164 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

= — =

Ticket Relation without hierarchy

Hierarchical Relation type Parent-Child,

Parent Ticket (A) with Child Tickets B, C, D)
canonly be setusing programming interface

Hierarchical Relation type Master-Slave,

MasterTicket (A) with Slave Tickets B, C, D)
can be set using Web Client (GUI)

Fig. 1: ConSol*CM Relation Types

In this section, we will not explain how to set-up ticket relations using the Web Client, but we will show you
how to establish relations using the programming interface, namely workflow scripts.

In the ConSol*CM Workflow API, the reference type is represented by the class (enum)
com.consol.cmas.common.model.ticket. TicketRelationType. This offers three values:

* REFERENCE
* MASTER_SLAVE
® PARENT_CHILD

Simple Ticket Relation without a Hierarchy
This relation type can be helpful when you want to create references which help to find the tickets related to
one ticket easier than using the search function.

Example use cases are:

®* When a new ticket is created you want to see if there are any other open tickets from the same
customer. If yes, you create a relation between the tickets. In this way, an engineer can easily jump
from one open ticket of the customer to the next.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 165

®* When a new ticket is created for a certain hardware category, you want to establish references to all
other tickets with the same hardware type.

This relation type can be built and manipulated using either the Web Client or the programming interface.
Thus, a relation of type REFERENCE can be built within a workflow script and can then be manipulated by
an engineer using the Web Client, provided he/she has the required access rights.

Example: Creating a Simple Relation between Two Tickets

Creating aticket relation of type REFERENCE using workflowAPI

wor kf | owApi . addRel ati on(Ti cket Rel ati onType. REFERENCE, "This is a very inportant relation",
pSour ceTi cketld, pTargetTicketld)

Master-Slave Relations

This relation type can be helpful when you want to create a hierarchy between a certain number of existing
tickets. Remember that this relation type can be established using either the Web Client or using the
programming interface. However, here, only the programming approach will be explained.

Example use cases are:

® In a company, there are several projects, each represented by a ticket. When the decision has been
made to integrate one of the projects in an overall program (also represented by a ticket), the project
manager uses the workflow activity Integrate into Program. There, the correct program has to be
selected (e.g. using an ACF). In the script of the workflow activity Integrate into Program, the program
ticket is set as Master ticket of the current project ticket.

® |n a service team, tickets for several different products are managed. For each product, there is one
product ticket. When a new service ticket has been opened, the engineer uses the activity Set product
where he can select the related product from a drop-down menu. In the workflow script of the activity
Set product, the service ticket is automatically set as Slave of the product ticket.

. Attention:

A Master-Slave relation can be built and manipulated using either the Web Client or the
programming interface. Thus, a relation of type MASTER_SLAVE can be built within a workflow
script and can then be manipulated by an engineer using the Web Client, provided he/she has the
required access rights. Use the Parent-Child construct when you want to make sure that no
engineer can manipulate the ticket hierarchy.

166 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Example: Creating a Master-Slave Relation between Two Tickets

Creating aticket relation of type MASTER_SLAVE using workflowAPI

/lin this script the project ticket (= current ticket) is set as slave ticket to
/1 the programticket which beconmes the master

/1 fetch the programticket ID. The ID of the programticket is already stored
// ina CFin the project (=current) ticket
def progTicketld = ticket.get("ReferencesFiel ds. Progranii cketld")

/] fetch ID of current ticket (which will becone the slave)
def nySlaveProjectld = ticket.id

wor kf | owApi . addRel ati on(Ti cket Rel ati onType. MASTER _SLAVE, "Sl ave Ticket: This project is part of
the programindicated in the master ticket", progTicketld, nySlaveProjectld)

Syntax: Finding All Slave Tickets

Version A: Finding all target tickets (here: all slave tickets)

/1 the ticket can be set, might be current ticket or another ticket
Li st <Ti cket > mytickets = workfl owApi . get Target Ti cket s(nyTi cket.get1d(),
Ti cket Rel at i onType. MASTER_SLAVE)

Version B: Finding all target tickets (here: all slave tickets)

/1 used for current ticket
Li st <Ti cket > mytickets = workfl owApi . get Tar get Ti cket s(Ti cket Rel ati onType. MASTER_SLAVE)

Parent-Child Relations

This relation type can be helpful when you want to create a hierarchy between a certain number of tickets
which should not be manipulated manually.

Example use cases are:

® A project should be managed by the project management ticket which becomes the parent. All tasks
within the project are represented as child tickets. This structure is automatically created by a
workflow script during set-up of the project ticket.

® A system migration is planned using one parent ticket. For each single component which has to be
migrated a child ticket is built. This structure is automatically created by a workflow script during
set-up of the project ticket.

The relation type PARENT_CHILD can only be built and manipulated using the programming interface.
Thus, a relation of this type can be built within a workflow script and can then only be manipulated by other
scripts.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 167

Example 1: Creating a New Child Ticket as Child of Current Ticket

Creating a child ticket

/1 this script creates a ticket for a task which will be child ticket
/1 of a project ticket (which will be the parent)

/] create a new ticket, which will become the task (=child) ticket
Ti cket newTask = new Ticket ()

/'l fetch the subject of the parent-to-be ticket, i.e. of the current ticket
def subj = ticket.subject

/'l or longer: def subj = ticket.getSubject()

/'l set the subject of the new task (= child) ticket
newTask. set Subj ect ("New Task for project " + subj)

/1 put the task (= child) ticket into the tasks queue
def tasksQueue = queueServi ce. get ByNane(" Tasks")

newTask. set Queue(tasksQueue)

/1 Initially, the new task ticket will not have an engi neer
newTask. set Engi neer (nul |)

/1l define the ticket text, i.e. the first coment in the new task ticket
def taskTicket Text = "Please work on this task asap”

/'l the contact for the new task ticket should be the sane as the one for the project ticket:
def taskContact = workfl owApi . get Pri maryContact ()

/lcreate PARENT_CHI LD rel ati on between project (parent) and task (child)
wor kf | owApi . creat eChi | dTi cket (newTask, taskTi cket Text, taskContact)
Example 2: Finding the Parent Ticket of a Ticket

Finding the parent ticket of a ticket

def ny_parent = workfl owAPI . get Parent Ti cket ()

Example 3: Finding All Child Tickets of a Ticket

Finding all child tickets of a ticket

/1 only works for current ticket:
Li st <Ti cket> my_chil dti ckets = workfl owApi . get Chi | dTi cket s()

168

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Example 4: Finding All Brother Tickets (Other Child Tickets) of the Same Parent

Ticket

Finding all brother tickets of a (child) ticket

/1 only works for current ticket:

Li st <Ti cket > my_brot hers = wor kf | owApi . get Br ot her Ti cket s()

Important Methods for the Work with Ticket Relations

Note the following rules for the work with ticket relations:

®* In MASTER_SLAVE relations, the master is always the source.
® In PARENT_CHILD relations, the parent is always the source.
® In simple REFERENCE relations the source is the ticket from which the relation has been created.

The following methods are methods of the class WorkflowContextService which is implicitly available as

workflowApi object in workflow scripts.

Method

Ticket createChildTicket(Ticket pTicket, String pTic

ketText, Unit pCustomer)

List getChildTickets()

List getBrotherTickets()

Ticket getParentTicket()

List getTargetTickets(TicketRelationType pType)

List getTargetTickets(long pTicketld,
TicketRelationType pType)

List getSourceTickets(TicketRelationType pType)

List getSourceTickets(long pTicketld,
TicketRelationType pType)

Explanation

Creates a new child ticket. Queue, priority, and
category have to be set correctly.

IntSet containing the ticket objects of the child
tickets of the current ticket.

IntSet containing the ticket objects of the brother
tickets of the current ticket.

Ticket object of the parent ticket or null if the
current ticket does not have a parent ticket.

Get list of ticket objects that current ticket has
relations of certain type to. For those relations, the
current ticket is the source ticket.

Get list of ticket objects that current ticket has
relations of certain type to. For those relations, the
ticket given with pTicketld is the source ticket.

Get list of ticket objects that current ticket has
relations of certain type from. For those relations,
the current ticket is the destination ticket.

Get list of ticket objects that current ticket has
relations of certain type from. For those relations,
the given ticket is the destination ticket.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/List.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/List.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/List.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/List.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/List.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/List.html?is-external=true

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Method

boolean hasTargetTickets(TicketRelationType
pType)

boolean hasTargetTickets(long pTicketld,
TicketRelationType pType)

boolean hasSourceTickets(TicketRelationType
pType)

boolean hasSourceTickets(long pTicketld,
TicketRelationType pType)

void changeSourceTickets(TicketRelationType
pType, long pTargetTicketld, List<Long>
pSourceTicketlds)

void changeTargetTickets(TicketRelationType
pType, long pSourceTicketld, List<Long>
pTargetTicketslds)

void removeRelation(TicketRelationType pType,
long pSourceTicketld, long pTargetTicketld)

void addRelation(TicketRelationType pType, String
pComment, long pSourceTicketld, long
pTargetTicketld)

Explanation

Check if ticket has target tickets. Check if relations
exist that have this ticket as source ticket.

Check if given ticket has target tickets. Check if
relations exist that have this ticket as source ticket.

Check if ticket has source tickets. Check if relations
exist that have this ticket as target ticket.

Check if given ticket has source tickets. Check if
relations exist that have this ticket as target ticket.

For the target ticket (e.g. a child ticket) the relations
of a given type (e.g. PARENT_CHILD) are
removed. For the same relation type a new relation
is created with the provided source tickets.

For the given source ticket all relations of the given
type are removed. For the list of provided target
tickets new relations of the given type are created.

Remove ticket relation between two tickets with
specified type.

Add relation of the specified type between ticket so
urceTicketld and targetTicketld.

169

http://docs.oracle.com/javase/6/docs/api/java/util/List.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/Long.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/List.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/Long.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true

170 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.7.3 Working with Customer Relations (Data Object Relations)

® Working with Customer Relations (Data Object Relations)
® Introduction
® Creating Unit Relations Using the Programming Interface
® Example: Add a Reseller - End Customer Relation
®* |mportant Java Classes for the Work with Unit Relations

Introduction

Since version 6.9.0, ConSol*CM offers customer relations. In older versions, this feature is not available!

To be able to work with customer relations, you have to have a profound knowledge of the FlexCDM, the
ConSol*CM Flexible Customer Model. Please refer to the ConSol*CM Administrator Manual (Version 6.9) for
a detailed introduction.

Three objects are essential:

Object Java class Admin-Tool Explanation
description
Customer Unit <none> The general description

or the general object
which represents a
customer, i.e. some
person or company who
is registered in the CM

database
Company Unit Data object of type com An object on company
pany level (i.e. the highest

level in the customer
model). This can be a
real company or this can
be a machine or another
object which represents
the level. An object on
the company level can
be the parent level for
an object on the contact
level.

From a logical point of
view, a company can
have several contacts.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 171

Object Java class Admin-Tool Explanation
description

Contact Unit Data object of type cont An object on contact
act level (i.e. the lowest

level in the customer
model). This can be a
real person or another
object which represents
the level. An object on
the contact level can be
a stand-alone object (in
a one-level customer
model) or can belong to
a company level object.
From a logical point of
view, a contact can
belong to none or
exactly one company.

. Attention:

Keep in mind that, starting with CM version 6.9, the main customer of a ticket can be a contact or a
company! The method used is ticket.getMainContact(). This returns an object of class Unit. The
object can be a contact or a company!

Customer relations represent relations between customers, i.e. companies and contacts.
They can be:

® directional

different levels in a hierarchy
* reference

same level, no hierarchy

A relation is of one of the following types:

® company - company
e.g. ... has a cooperation with ... (company X cooperates with company Y)
® The companies can belong to the same or to different customer groups.
® The involved customer groups can have the same or different customer data models.

172 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

® company - contact
e.g. ... Is customer of ... (contact X is customer of company Y)
® The company and the contact can belong to the same or to different customer groups.
® The involved customer groups can have the same or different customer data models.
® contact - contact
e.g. ... is serviced by ... (contact X from company X is serviced by contact Y from company Y)
® The companies and contacts can belong to the same or to different customer groups.
® The involved customer groups can have the same or different customer data models.

In the programming interface, a customer object (i.e. a contact or a company) is represented by an object of

the class Unit.

Reseller Model MyCustomersModel

I—0 W

v
r

Reseller 1 Reseller 2 MyNewCompany
4
W v My Ty
Contacts in Reseller 1 Contacts in Reseller 2 Contacts in MyNewCompany

DirectCustomers Model

/

i/
W

Contacts in DirectCustomers

4

Fig. 1: ConSol*CM Customer Relations

. Attention:

To work with unit relations in workflow scripts, make sure you have established and configured all
required relations using the Admin-Tool before you start programming.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 173

Creating Unit Relations Using the Programming Interface

. Attention:

In this book we sometimes use the new terms data object and data object definition which are part
of the new customer model of ConSol*CM version 6.9 and higher (FlexCDM). However, the names
of the corresponding Java classes are still Unit and UnitDefinition. All other Java classes which
deal with customer data objects are also still named Unit... . Please keep that in mind when you
work on the administrator level as well as on the programmer's level with a 6.9.x version. Please
refer to the ConSol*CM Java API documentation for details.

Example: Add a Reseller - End Customer Relation

In the following example, a relation has been defined in the Admin-Tool to reflect a reseller - end customer
relation. A company of the customer group Reseller sells products to a customer (a person, a contact) of the
customer group DirectCustomers.

& User attributes

Customer groups I Customer data model | Data object actions | Customer roles | Data object relations | Engineer functions | Prujadsl

Data object relations Details
Filter: [All customer groups - | | | Name: ResellerDirectCustomersRelation
Type: Directional
Name Relation Type

Reportable:
ResellerDirectCustomersRelation Directional

Only configurable via workflow

Source

Level: Company

Customer group: Reseller |
L f

T Reseller SELLS TO END CUSTOMERS relation

Target

Level: Contact

Customer group: DirectCustomers

E=TrmE Customer end of RESELLER SELLS TO END CUSTOMERS relation

BEOLL 5o

Fig. 2: ConSol*CM Admin-Tool - Definition of Reseller - End Customer Relation

A ticket is created with a main customer. This customer is an employee of a reseller company. The end
customer to whom the reseller company sells products is added as additional customer in the role end
customer to the ticket. The engineer who works on the ticket should be able to create a relation between the
reseller company (source) and the end customer person (target) using a workflow activity.

174

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Sell a printer to each special end customer
ServiceDesk | Work in progress
Assigned to ServiceDesk, Susan | Open since 5/5/14 3:07 PM
Priority normal Module misc

Ask for feedback no
Desired deadline 5M5/14 10:00 AM

| Add | Hide

Skywalker,Luke « Reseller

Additional
Mr. Sample ¥ DirectCustomers end customer

| Add | Hide
| Add | Hide

History | Comment | E-Mail | Attachment | Time booking | Hide
Display communication + Sorting latest first +

|Mdcorrrnert.e—mﬁora'tadmert |

HEE

[]
1 hour ago # by Susan Servi | Action -
Please sell a printer to each of our special customers via Reseler. Luke Skywalker is our contact person.
[o]

Ticket in progress

Put ticket on hold

Display List

Empty lists

Display Customer Data

Add RESELLER-END CUSTOMER
relation

Workspace is empty

All your unsaved tasks are
automatically listed in this
Workspace.

e

Q Anfrage wegen Gr...

[L] Sky-Maerz-MitteA...

Fig. 3: ConSol*CM/Web Client - Example Ticket with Main Customer and One Additional Customer

In the Service Desk workflow, there is a workflow activity Add RESELLER-END CUSTOMER relation (see

next figure).

. 3

Display Customer
Date has been reached
O

Data
4
Work on ticket @
L'k
Empty lists

-0
Inform team lead
L}
Display List

Confirmed: e-mail
read!

Ticket in progress

Clone ticket

o 4
0

Frovide bonus or
woucher

Fig. 4: ConSol*CM Process Designer - Workflow Activity for Adding a Unit Relation

Re-activate ticket

Put ticket on hold

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 175
The following script is used in the workflow activity Add RESELLER-END CUSTOMER relation:

Adding a data object relation using a workflow script

/1 get Conpany of the main custoner of the ticket, this is the RESELLER conpany:
/1 1. get the main contact of the ticket. Here, this is a person = contact:

def cont = ticket.getMi nContact ()

/1 2. get the conpany of the contact, this is the reseller conpany

def comp = cont. get Conpany()

/1 get all additional contacts of the ticket in the custoner role ,end customer*
/land start the loop for all those additional custoners:
def end_custs = ticket.getContacts("end customer").each() { e_cust ->

//build all conponents for new unit relation:

/1 1.get the UnitDefinition by nane (this is the nane used in the Adm n-Tool):

def unitrel _def = unitRel ationDefinitionService.getByNane("ResellerDirectCustonersRel ati on")

/] create a new unit relation object with the unit definition and source

/'l (the reseller company) and target (the end custoner person)

def new rel = new UnitRelation(unitrel _def, conp, e_cust, "This Reseller sells to the end
cust omer")

/! create the new unit relation in the system
def new_rel 2 = unitRel ati onService.create(new_rel)

When the engineer has executed the workflow activity, the relation from the reseller company to the end
user has been established.

176 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Company Display
MyNewSpaceCompany 999 - Reseller

Groups Edit | Hide

ResellerCompanyData Service Contract Data Internal responsibilities

MyNewSpaceCompany 999
; Milkyway 77 Alderaan 7777
I Unknown
H 123
Tickets (0) Hide

All tickets -

Mo search results

Contacts (1) Hide | Add
Add/Remove column “email’, Torename’, .. + | OK Number per page 10 +
Contact email farename customer_name phone vip_person

SkywalkerLuke | katia@consolde | Luke || MyNewSpaceCompany 958 Skywalker 123 no
Additional details Hide
Comments Attachments
New

List of comments

This company does not have any comments.

Relations Add | Hide

Reseller SELLS TO END CUSTOMERS relation (DirectCustomers) (Contact)

Add/Remove column Customer name’ -~ | OK Number per page 10 +
Date: Customer name Note Actions
55114 15:51 Mr. Sample This Reseller sells to the end customer Edit

[TE PP

Fig. 5: ConSol*CM/Web Client - New Unit Relation (Created by Workflow Script)

e

Important Java Classes for the Work with Unit Relations

Java class Explanation
Unit A data object (unit): a contact or a company.
UnitRelation A relation between two data objects (units). Visible

in the Web Client on the contact or company page
under Relations.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 177

Java class Explanation

UnitRelationDefinition The definition of a unit relation as configured in the
Admin-Tool under User attributes - Data object
relations. A UnitRelation always has a certain Unit
RelationDefinition.

UnitRelationDefinitionService Singleton. Available as object unitRelationDefinition
Service. Service which provides helpful methods
for the work with data object (unit) relations. See
the ConSol*CM Java APl documentation for
details.

UnitRelationService Singleton. Available as object unitRelationService.
Service which provides helpful methods for the
work with data object (unit) relations. See the ConS
ol*CM Java API documentation for details.

178 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.8 Searching for Tickets and Customers Using the
ConSol*CM Workflow API

® Searching for Tickets and Customers Using the ConSol*CM Workflow API

® Introduction

® Searching for Tickets
® Example 1: General Example to Search for Tickets
® Example 2: Find All Tickets with the Same Service as the Current Ticket
® Example 3: Search for Tickets by Unit

® Searching for Units (Contacts and Companies)
® Example 1: Search for Contacts by First Name and Last Name
® General Syntax for Unit Search by Enum Value
® Example 2: Search for Units by Enum Value

6.8.1 Introduction

In ConSol*CM you can search the database for tickets or for units (contacts and companies). Both search
modes are based on the same principle:

1. A criteria object is created where all parameters for the target objects are stored.
a. TicketCriteria for tickets
b. UnitCriteria for contacts and companies
2. This criteria object is handed over to a service which then returns a list with the result objects.
a. workflowApi (WorkflowContextService) for tickets
b. UnitService for units

The fields which are set as parameters for the criteria objects have to be indexed, i.e. the annotation
field-indexed has to be set.

6.8.2 Searching for Tickets

To search for tickets you have to create the TicketCriteria object. The following fields can be set (see also
the respective setter methods in the following picture):

® Date of ticket creation

®* Engineer

® System-specific custom fields
® Ticket history criteria

® Ticket IDs

* Modification date

® Ticket name

® Ppattern for the ticket subject
® Queue IDs

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 179

® |Ds for current workflow scopes
® Current status (closed/open)
® Additional engineers

setCreationDateRange (DateRange pCreationDateRange)
setEngineerCriteria(TicketCriteria.EngineerCriteria pEngineerCriteria)
setFields (Set<ibztractField> pFields)
setHistoryCriteria(TicketCriteria.HistoryCriteria pHistoryCriteria)
setIdRange (ocrg.apache.commons. lang.math. LongRange pIdRange)

setIds (Set<Long> plds)

setModificationDateRange (DateRange modificationDateRange)

setName (String plame)

setPattern (String pPattern)

setueuelds (Set<Long> pQueuelds)

setScopelds (Set<Long> pScopelds)

setStatus (TicketCriteria.Status pStatus)

setSubject (String pSubject)

setlUserCriteria (Set<TicketUserlriteria> pUserCriteria)

Fig. 1: Setter Methods of Class TicketCriteria, CM Version 6.9.3

The TicketCriteria object has to be handed over to the WorkflowContextService which is implicitly available
as singleton workflowAPI in each script. Please see the following examples and refer to the ConSol*CM
Workflow API Java documentation for details about classes and methods.

Example 1: General Example to Search for Tickets

Search for tickets

def ticketCrit = new TicketCriteria()

ticketCrit.subject = "TICKET_SUBJECT"

ticketCrit.setQueuel ds([new Long(wor kfl owApi . get QueueByNane(" QUEUE_NAME") .id)] as Set)
ticketCrit.setFields([new StringField(new Fiel dkey("FI ELD_GROUP", "Fl ELD NAME"),
"SEARCH VALUE")] as Set)

def foundTi ckets = workfl owApi . getTicketsByCriteria(ticketCrit)

def firstTicket = foundTickets?. first()

Example 2: Find All Tickets with the Same Service as the Current Ticket

The following example is taken from a workflow of a help desk environment. When the ticket has been
created and the service has been set from a list, the workflow should check automatically if there are other
open tickets with the same service. A dependent enum is used for the services:

® 1stlevel
Several categories, one of them is HARDWARE.

® 2nd level
Exists only when HARDWARE was selected in the 1st level. In the 2nd level, hardware categories are
listed.

180 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Find tickets with the same service as the current ticket

def crit = new TicketCriteria()
crit.setStatus(TicketCriteria. Status. OPEN)
Set <Abstract Fi el d> cfs = new HashSet <Abstract Fi el d>();
if (servl. getNanme().equal s("HARDWARE")) {
def serv2 = ticket.get("Service_Fields. Hardware")
cfs.add(new Enunfi el d(new Fi el dKey(" Servi ce_Fi el ds", "Hardware"), serv2));
} else {
cfs.add(new Enunti el d(new Fi el dKey(" Servi ce_Fi el ds", "Service"), servl));
}
crit.setFields(cfs)
Li st <Ti cket > foundTi ckets = wor kf | owApi . get Ti cketsByCriteria(crit);

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 181

Example 3: Search for Tickets by Unit

In this example, we look for the Account Management ticket for a certain company.

Search for tickets by unit

i mport com consol . cmas. comon. nodel . scri pting. unit. Post Acti onType
i mport com consol . cmas. common. nodel . scri pting. unit. PostActi onPar anet er
i mport com consol . cmas. comon. nodel . custonfi el d. Uni t
i mport com consol . crmas. common. nodel . ticket. TicketCriteria
i mport com consol . cmas. comon. nodel . custonfiel d. ListField
i nport com consol . cmas. common. nodel . cust onfi el d. Cont act Ref er enceFi el d
i mport com consol . cmas. cormon. nodel . cust onfi el d. Uni t Ref er enceSear chFi el d
i mport com consol . cmas. comon. nodel . cust onfi el d. Cont act Ref er enceSear chFi el d
i nport com consol . cmas. comon. nodel . cust onfi el d. met a. Fi el dKey
i mport com consol . cmas. comon. nodel . ti cket. Ti cket
i mport com consol . cmas. common. nodel . Cont act Ti cket Rol e
i nport com consol . cmas. common. nodel . custonfiel d. StringFi el d
i mport com consol . cmas. common. nodel . scri pting. unit. UnitActionScriptResult
/1 get AM queue for search
def g_id = (workfl owApi . get QueueByNane(" Account Managenent")).id
def g_ids = new HashSet ()
g_i ds. add(q_id)
//find AMticket for the conpany
def crit = new TicketCriteria()
crit.setQueuel ds(q_ids)
/] Create List Field Key
def contact SearchLi stFi el dkey = new Fi el dkey("queue_fiel ds","contacts")
/'l Prepare List Field
def contactsListField = new ListField(contact SearchLi stFi el dkey)
/1 Create Menberfield Key
def contact Sear chFi el dkey = new Fi el dKey("queue_fiel ds", "contacts_menber")
/]l Create Unit Menberfield with Unit and Ticket-Min Role
def contactsMenber = new Cont act Ref er enceSear chFi el d(cont act Sear chFi el dKey, unit,
Cont act Ti cket Rol e. MAI N_ROLE)
/1 Put Menmber Field in Unit List Field
cont act sLi st Fi el d. addChi | d(cont act sMenber)
/1 Put prepared fields into TicketCriteria
crit.setFields([contactsListField] as Set)
[/l Search ... and Result
def foundTickets = ticketService.getByCriteria(crit)
println "Found tickets: ${foundTickets}"
if (foundTickets) {
def AMtic = foundTickets.first()
def AMtic_id = AMtic.id

182 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.8.3 Searching for Units (Contacts and Companies)

To search for units (i.e. for contacts and/or companies) you have to create the UnitCriteria object. The
following fields can be set (see also the respective setter methods in the following picture):

® Customer group

® System-specific data object group fields

® Unit IDs

® Patterns for units

® Phone number (new in CM version 6.9.3, used for CM/Phone)
* TicketCriteria

® UnitDefinition name

® Boolean UselnCriterion

Then you use the unitService to get the search result.

setCustomerGrouplds (Set<Llong> pCustomerGrouplds)

setFields (Set<AbstractField> pFields)

setGrouplames (Set<String> pGroupNames)

Deprecated.

setIdRange (org.apache .. commons.lang.math.LongRange pIdRange)

setlds (Set<Long> plds)

setPattern (String pPattern)

setPhoneliunber (String pFhoneNumber)

setTicketCriteria (Set<AbstractField> pCallUnitReferences, TicketCriteria pTlicketCriteria)
setUnitDefinitionNames (Set<String> pUnitDefinitiontames)

setUseInCriterion (boolean pUseInCriterion)

Fig. 2: Setter Methods of Class UnitCriteria, CM Version 6.9.3

Example 1: Search for Contacts by First Name and Last Name

Search for contacts by first name and last name

def unitCrit = new UnitCriteria()
unitCrit.setFields([new StringField(new Fi el dkey("UN T_GROUP_NAME", "firstnane"), "Mx"),
new StringFi el d_new Fi el dKey("UNI T_GROUP_NAME", "l astnane"), "Misternann")]
as Set)
def foundContacts = unitService.getByCriteria(unitCrit)
def firstContact = foundContacts?.first()

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 183

General Syntax for Unit Search by Enum Value

Search for units by enum value (general syntax)

i mport com consol . cmas. common. nodel . custonfield. UnitCriteria
i mport com consol . cmas. cormon. nodel . cust onfi el d. EnunSear chFi el d
i mport com consol . cmas. comon. nodel . cust onfi el d. met a. Fi el dKey

def unitCrit = new UnitCriteria()

def conmpanyEnunfi el d = new EnunfSear chFi el d(new Fi el dKey("custoner", "conpany"),
[enunSer vi ce. get Val ueByNane(" ENUM_GROUP_NAME", ENUM VALUE_NAME)] as Set)
unitCrit.setFields([conmpanyEnuntiel d] as Set)

uni t Service.getByCriteria(unitCrit).each { foundContact ->
println "Processing found contact: "+foundContact.get("nanme")

Example 2: Search for Units by Enum Value

Search for units by enum value (example)
def unitCrit = new UnitCriteria()
/lall other UnitCriteria init operations skipped

/1 this is the requested value inside the list:
def secLvl = ticket.get("transportEntryData.securitylLevel")

/I Shi pper Dat a/ securitylLevel is the path of the EnunField inside the |ist
def secLvl Enunfi el dKey = new Fi el dKey(" Shi pper Data", "securityLevel ")

//create the tenplate field with Fi el dkey and our value to search for
def secLvl Tenpl ateFi el d = new Enunfi el d(secLvl EnunFi el dKey, secLvl)

/| Shi pper Dat a/ securitylLevels is the path of the list itself
def secLvl Li st Tenpl at eFi el dkey = new Fi el dKey(" Shi pper Dat a", "securitylLevel s")

/linit the tenmplate list with the value to be searched for
def secLvl Li st Tenpl ateFi eld = new Li st Fi el d(secLvl Li st Tenpl at eFi el dKey, [secLvl Tenpl at eFi el d])

/] put the tenplate list into the UnitCriteria object
def unitCrit.setFields([secLvlListTenplateField] as Set)

/1 Search ... and Result
def shippers = unitService.getByCriteria(unitCrit)

184 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.9 Debug Information

6.9.1 Introduction

Sometimes you might want to check the output of a workflow or Admin-Tool script by using debug output into
log files. In ConSol*CM, the debug output usually is written to server.log which is located in the following
path:

® In JBoss:
<SERVER HOVE>\| og\ server. | og
® |In Oracle WebLogic:
<DOVAI N_HOVE>\ cm | ogs and <DOMAI N_HOVE>\ cnt f - | ogs\ server. | og

The logging configuration can be changed by editing the log4j configuration file. If you have defined a
non-standard log path, you will know where to find the server.log file.

As an alternative, you can write information into the ticket as text.

6.9.2 Using Statements for Debug Output

Debug Output to server.log File

The following statements can be used to write log information to the server.log file. This works in workflow
scripts as well as in Admin-Tool scripts.

® println "This is nmy debug nessage.'

® println("This is nmy debug nessage.")
® |og.info("This is ny debug nessage.")
® log.info "This is ny debug nessage."

. Attention:

In a WebLogic system, usually the /og.info statement has to be used. The printin might not work.

Debug Output as Text Entry in Ticket

If you would like to display the information to the ticket (e.g. because you do not have access to the file
system where the log files are stored) you can write the text into the ticket as regular comment:

® wor kfl owApi . addTi cket Text (' This is nmy debug nmessage', 'This is the subject
of nmy debug nessage', false)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 185

Debugging ConSol*CM Standard Scripts

In ConSol*CM standard scripts, e.g. createTicket.groovy, you will find statements similar to the following:

Debug entry in ConSol*CM standard e-mail script

if (log.isDebugEnabled()) {
| 0g. debug("Extracted email fromfromfield is $email")

}

To activate the debug output, i.e. to have CM write the debug information into the log file, you have to set the
log level of the respective module (here: e-mail) to DEBUG. This is done in the file jboss-log4j.xmi.

We will not elaborate on this topic here. If you would like to learn more about CM logging, please refer to the
ConSol*CM Operations Manual.

186 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

7 Best Practices

® Best Practices
® The Basic Organization of a Workflow: Using Scopes
® Variant A: Use of a Global Scope
® Variant B: Use of Three or More Main Scopes
® The Position of the START Node
® Store Some Workflow Scripts in the Admin-Tool
® When to Use Admin-Tool Workflow Scripts
®* How to Use Admin-Tool Workflow Scripts
® Consider the Use of Trigger Combinations Well
® Do Not Trigger Ticket Update Events If Not Really Required
®* How to Use the Disable Auto Update Parameter
® Avoid Self-Triggering Business Event Triggers

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 187

7.1 The Basic Organization of a Workflow: Using
Scopes

One of the first things you have to consider, when you start making a concept for a workflow, is the number
and organization of scopes.

@ Information:

Of course you can always modify the workflow in later steps, but this might have implications for
existing tickets, views, and reports. This is particularly significant if the workfow is used in a
production environment.

Consider the following points when setting up the basic structure of a workflow:

® Which trigger should be active for the ticket in which states of the process?
For example, should a time trigger, which monitors the new tickets, also be active for tickets which are
already in progress? Or, should a mail trigger be active when the ticket has been finished by the
engineer?

® Which views are required?
Views are based on the position of tickets in scopes, see ConSol*CM Administrator Manual section
View Administration for details.

7.1.1 Variant A: Use of a Global Scope

A global scope is a scope which contains all other scopes of the workflow. You might want to use such a
global scope because some processes require reactions to events during the entire process. Those events
are implemented using triggers which are attached to the global scope. For example, if you want to
supervise for the entire process, if an e-mail has been received, you attach a mail trigger (see section Mall
Triggers) to the global scope. All sub-scopes of the global scope inherit the sensitivity to this trigger. If the
e-mail should only be supervised for a sub-scope, you can attach the mail trigger to this sub-scope.

The same applies to all kinds of triggers, i.e. business event triggers (see section Business Event Triggers)
and time triggers (see section Time Triggers).

The START node always has to be positioned outside the Global Scope!

188 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

START
k d 3
=

Fig. 1: ConSol*CM Process Designer - Workflow with Global Scope

Please keep in mind that you can always use triggers in inner scopes which will then consume the event
(see section Firing Order of Business Event Triggers as an example for business event triggers). For
example, if you would like to use a mail trigger in the entire process in the global scope but you need a
certain reaction of the ticket in the Finished scope, you can use a mail trigger which is attached to the
Finished scope.

7.1.2 Variant B: Use of Three or More Main Scopes
An alternative way to construct a workflow is to use three or more main scopes:

®* New tickets
® In progress (only here, a mail trigger is applied)
® Closed tickets (in one or more separate scopes)

The following picture shows an example for a workflow which has been built according to this principle.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 189

STARS

Il:'-lau tickat wi Closs tickat withe
salutian selution
¥ on

L

ED 55

Fig. 2: ConSol*CM Process Designer - Workflow with Three Types of Main Scopes

190 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

7.2 The Position of the START Node

The best position of the START Node depends on the use of triggers in the following scope. If time triggers
are used in the first scope, where tickets are forwarded after the start node, the start node should be placed
outside the scope. In case the start node is placed inside the first scope, the time trigger might not be
initialized correctly. So place the start node in the default scope.

Do not place START node in scope where time trigger is located!

Eacalation !!! Deadline
zeached in 4 hra!
()

Fig. 3: ConSol*CM Process Designer - Position of START Node

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 191

7.3 Store Some Workflow Scripts in the Admin-Tool

For scripts, which are used over and over again in workflow activity and/or precondition scripts, it might be
better to store them in the Script section of the Admin-Tool and call them from the workflow script.

7.3.1 When to Use Admin-Tool Workflow Scripts

We would neither recommend to always use this method nor would we advise against it. We will illustrate the
advantages and disadvantages of this approach and you can then decide for yourself where in your system
you want to apply it.

The advantages o of storing workflow scripts in the Admin-Tool are the following:

® The script is stored only once and has to be maintained/changed at only one place.
® Changes of the scripts are executed in the system just in-time, no deployment (as for workflows) is
required.

g

The disadvantages of storing workflow scripts in the Admin-Tool are the following:

® The process logic is stored at two separate places, i.e. you always have to work with the Process
Designer as well as with the Admin-Tool to see the entire process.

® The Script Editor in the Admin-Tool is not as comfortable as the Workflow Script Editor.

® Most objects have to be imported into Admin-Tool scripts, because they are not present implicitly.

* A workflow export alone is not sufficient to move the workflow, because scripts in the Admin-Tool are
not included in the export.

7.3.2 How to Use Admin-Tool Workflow Scripts

Admin-Tool scripts which are used in the workflow have to be of type Workflow. An Admin-Tool script is
always called from the workflow using the interface ScriptProvider.
Calling an Admin-Tool script from the workflow

def scriptProvider = scriptProviderService. creat eDat abaseProvi der ("scri pt Nanme. groovy")
def r = scriptExecutionService. execute(scriptProvider)

192 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Calling an Admin-Tool script from the workflow with use of parameters

/]l Create the scriptProvider for the required Adm n-Tool script, here "scriptNane. groovy"
def scriptProvider = scriptProviderService. creat eDat abaseProvi der ("scri pt Nane. gr oovy")

/1 Define a HashMap with the key-val ue pairs which you would like to pass to the Adm n-Tool
def params = ["tenpl ateNane": "newCustoner"]

/1 Execute the script. The passed paranmeters are available in the Adm n-Tool script. In the
/'l exanple, the variable tenplateName does not have to be defined in the Admi n-Tool script
/] but it is present based on the definition in the passed HashMap.

/1 The variable r will contain the return value of the script or Null if there is no return
/1 val ue

def r = scriptExecutionService. execute(scriptProvider, parans)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 193

7.4 Consider the Use of Trigger Combinations Well

/. Attention:

Beware of unnecessary trigger executions! They will consume resources and slow down
application performance.

Example 1:
This example shows many business event triggers in one big global scope.

Activi tys
s Im
ctivi

NOTHING

Atvty.r
AtvtyE

Fig. 4: ConSol*CM Process Designer - Scope with Triggers

194 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Example 2:

If it is possible, please use triggers in the smallest scope possible (in this example, the trigger with Decision6
was moved to a smaller scope).

Start

;_‘_J

Activityl
NOTHING

+

Activityd
0

Activityll

e

Fig. 5: ConSol*CM Process Designer - Move Trigger to Smaller Scope

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 195

Example 3:
If it is not possible to move triggers to smaller scopes and you do not want to call all of the triggers while
executing some activity, move this activity to an outside scope without any triggers.

0
Activi ‘Yﬁ -
Activitys -’Q
)
Activitys
Activityll Q0 &) 0

Fig. 6: ConSol*CM Process Designer - Separate Scopes with and without Triggers

In this example, the position of Activity11 is optimized. It triggered many Decision calls and all of them went
to NOTHING. Executing Acitivity11 outside of the global scope keeps a good quality of workflow
performance!

196 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

7.5 Do Not Trigger Ticket Update Events If Not Really
Required

. Attention:

Beware of unnecessary ticket update events (Java class TicketUpdateEvent)!

For example, assigning the current engineer (the engineer who is logged in and working with the Web Client)
to a ticket can be done in two ways. In one solution a ticket update event is fired, in the other this does not
happen. If it is not necessary for a business case to throw a TicketUpdateEvent, avoid it, because an
unnecessary call of TicketUpdateEvent causes a decrease in performance.

Code which triggers TicketUpdateEvent

//this nethod throws a TicketUpdateEvent after assigning the current engineer to the ticket
wor kf | owApi . assi gnEngi neer (wor kf | owApi . cur r ent Engi neer)

Code which does not trigger TicketUpdateEvent

//this nmethod does NOT throw a Ti cket Updat eEvent!
ticket. set Engi neer (wor kf | owApi . current Engi neer)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 197

7.6 How to Use the Disable Auto Update Parameter

% Attention:

Use the disable auto update flag for workflow components with care!

Please remember that a ticket udpate event is by default fired after every activity execution. A ticket update
event is an operation that has a great impact and must be used with care!

To avoid performance problems, you can use the disable auto update flag. It depends on the business logic,
if it makes sense to use this flag or not.

For example, when we have a series of automatic activities, a good practice is:

®* The 1st automatic activity has the disable auto update flag on.

(It will not call the ticket update service method after activity execution.)
®* The 2nd automatic activity has the disable auto update flag on.

(It will not call the ticket update service method after activity execution.)
® The 3rd automatic activity has the disable auto update flag on.

(It will not call the ticket update service method after activity execution.)

® The last automatic activity has the disable auto update flag off.
(It will call TicketUpdateEvent once, at the end of the pipeline!)

198 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

EEE@ : Properties I x| [
name Automaticl___ @ ;;
- 0 =
description [
sort index 100 E]
overlay E]
script [
activity type Automatc 000 o«
dizable auto update [l

disable auto update

Automatie?

dizable auto update

Automatic?

Fig. 7: ConSol*CM Process Designer - Activities with "disable auto update" Option

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 199

7.7 Avoid Self-Triggering Business Event Triggers

When you use a business event trigger which is followed by an automatic activity, be careful that in this
automatic activity the fields or objects, which trigger the business event trigger, are not <= changed again
(which would fire the trigger again)!

If the use case requires that the fields, which caused the firing of the trigger, have to be changed again, then
the logic, where the fields are changed, has to be placed in an activity outside the scope which hosts the
trigger.

Business Event Trigger reacts to change of parameter XY

Change Parameter

XY
JI' y
Change Parame @ O (p] .
Forwarding Activity Do something else

Fig. 8: ConSol*CM Process Designer - Avoiding Self-Triggering Business Event Triggers

200 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

8 Deploying Workflows

® Deploying Workflows
® |ntroduction and Workflow Life Cycle
® Engineer Rights Required for Workflow Deployment
® Actions During Workflow Deployment

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 201

8.1 Introduction and Workflow Life Cycle
During the development of a workflow you use the following functions which reflect the workflow life cycle:

®* Load S the workflow or create a new workflow, e.g. version 1.2.
® Edit the workflow.

Save 8 the workflow as a new version. A new version number will be used, e.g. 2.0.
® Continue editing the workflow.

Save S the workflow in the current version, e.g. version 2.0.
® Continue editing the workflow.

* Deploy ¥ the workflow. This will save and deploy the workflow, e.g. version 3.0.
A deployed workflow always has an increased major number compared to the last saved version.
The workflow which was active/deployed before is now no longer active, but the new version of the
workflow is in operation at once. The ConSol*CM system does not have to be stopped.
The new version is marked in bold characters and with status currently deployed in the workflow list
which is opened for the Load and Delete operations.
After this step, the next saved version will be saved as new version.

» Attention:

Make sure you are aware of the number of tickets which have to be transferred when a new
workflow is deployed! The deploy operation might take some time in large environments! See
section Actions During Workflow Deployment.

202

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

8.2 Engineer Rights Required for Workflow Deployment

An engineer who is supposed to deploy workflows must have at least one role with one of the following

access rights:

® Global Permissions:
Administrate

* Workflow Permissions:

Deploy workflow

= Role Administration

Customer Group Permissions | Views

Queue Permissions

AccountManagementReseller
CM_Administration
CM_TrackBasicCustomers
CustomerManagerMyCustomerGroup
CustomerManager_DirectCustomers
CustomerManager_Reseller
HD_1st_Level_Role

HD _2nd_Level_Role

HD _Sales_Role

HD _Supervisar

ServiceDesk

TemplateManager

Workflow_Admin

[2)[e] (D)

Roles 13 roles
Filter: :.l'-\JI gqueues -
MName

Global Permissions
[] Administrate
Waorkflow Permissions

Read workflow
Write workflow

Deploy workfow
Template Permissions

[] Wirite template
Representation Permissions
[~] Configure representation
Track User Permissions

[] Access tickets of the own company

| Enaineer Functions
Global Permissions

Fig. 1: ConSol*CM Admin-Tool - Engineer Permissions for Deploying Workflows

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 203

8.3 Actions During Workflow Deployment

When a workfow is deployed, it will be active at once. Thus, consider well what will happen to open tickets
which are in a queue where the new workflow will be applied. They will be transferred to the new workflow.

In case you have performed one or more of the following steps:

®* removed one or more activities
®* added one or more automatic activities
® added one or more triggers

the following actions will be initiated after you have pressed the Deploy button.

You will be prompted for a decision concerning the open tickets in the respective queues which cannot stay
at their previous position within the process because the workflow architecture was changed:

1. Stay as close as possible to the previous position (default).
2. Let all those tickets start the process from the beginning.

In case you choose the first option (keep position), the following actions will be performed:

1. The transfer of tickets starts.

2. The name of the ticket's last executed activity is compared to the names in the current workflow
definition. If the ticket's activity is no longer in the workflow definition, a new target activity for the
ticket must be found.

3. The History for the ticket is loaded. The transfer engine iterates over all activities executed from the
beginning of the process instance and tries to find one which would be suitable, i.e. which

a. is still present in the workflow definition,
b. is not a trigger target element,
c. is not a dead end activity.

Each ticket which cannot keep its position will be moved to the suitable position according to those criteria.
In any case the tickets will be moved backwards, never forwards, within the workflow.

For a summary of all ticket transfers click on View in the main menu and select Show ticket transfer history:.

* Workflow name
Name of the workflow.
® Version
Version of the old workflow.
® Start time
Start of the transfer. Will be the start time of the Deploy operation.
®* End time
End of the transfer. After this time the new workflow will be in full operation.

204 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

® Transferred tickets
Number of tickets which have been transferred, i.e. which had to be touched by the system during
workflow deployment. Should be identical to the sum of open tickets in all queues which use the
workflow.

® Details
Additional information concerning the deployment with ticket transfer.

In the bottom right corner of the Process Designer GUI, the overall status of the ticket transfer is displayed.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 205

9 Appendix A - List of Annotations

® Appendix A - List of Annotations
® Alphabetical List of Field Annotations (up to Version 6.9.3)
® Alphabetical List of Group Annotations (Version 6.8 and Older)
® Alphabetical List of Group Annotations (Version 6.9 and Higher)

206 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

9.1 Alphabetical List of Field Annotations (up to Version

6.9.3)

Name Annotation Description Values Comment
Type
A accuracy validation For date fields, date (default) Show date
to define the without time.
level of detail
displayed.
date-time Show date with
time.
only-time Show only
time, no date.
B boolean-type component-typ Definition of the check box Field that can
e layout of a (default) be checked
boolean field. (set to false by
default).
radio 2 radio buttons
(yes/no) for
selection (only
one can be
active).
select Drop-down-fiel
d with 2 values
(yes/no).
C colspan layout Defines how <number> Number of
many columns columns.
are reserved
for the field in
the layout.
contact search search-result Identifies true Remove the
result column whether the annotation if
field should be the field should
presented in not be visible
the search by default.
result by
default.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

207

Name

contains

contacts
D dialable
E email

Annotation
Type

ticket contact
relation

phone
commander

validation

Description

Used only for
list field
definition,
indicates that
the defined
fields can hold
contact
information.

Defines a field
with a phone
number.

Used for e-mail
addresses to
check if the
format is
correct, i.e. if
<name>@-<do
main> has
been entered.

Values

true / false

true

true

Comment

Necessary to
distinguish if
the list is
shown with the
contact (true)
or with the
ticket (false).

Remove the
annotation if
the field should
not hold a
dialable phone
number.

Version 6.9
and higher:
Used with
CM/Phone
only. Marks a
phone number
as
automatically
dialable for
outgoing calls
for the CTI
system.

May be used
with string cust
om fields.
Remove the
annotation if
the format
should not be
checked.

208

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Name Annotation
Type

enum field with ticket display
ticket color

enum-in-search component-typ
-type e

enum-type component-typ

e

Description

Defines the
background
color of the
ticket icon for
ticket list and
ticket.

Defines
whether an
enum field
usedin a
search accepts
search over
multiple values.

Layout
definition of list
display.

Values

true / false

single (default)
/ multiple

select (default)

radio

autocomplete

Comment

The field has to
exist within
enum
administration
where lists,
values, and
colors are
defined.

Accepts search
over multiple
values if value
multiple is set.

Drop-down list
for selection.

List of radio
buttons to
select (only one
option can be
active)

Drop-down list
for selection
where the field
is an input field
used to filter
the list.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

209

Name Annotation
Type

field-group layout

field indexed indexing

Description Values
Allows <string>
grouping of

fields in view m
ode. Annotation
is ignored in edi

t mode.
Used to transitive
indicate that
the field may
be indexed.
unit
local

Comment

To group fields
the same string
value has to be
set in the
annotation of
each field. Two
or more custom
fields are
bound when
they share the
same value of
this annotation.
The group of
coupled custom
fields is shown
only if all of
them have
values set.

All data is
displayed
(ticket and
customer).

Used for
customer data.
Only the unit
and the parent
unit (i.e.
company) is
given as a
search result,
no tickets are
provided.

Used for
customer data.
Only the unit is
given as a
search result,
no company
and no tickets
are displayed.

210

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Name

fieldsize

Annotation Description Values
Type
not indexed
layout Displayed field <rows>;<cols>
size within

ticket layout.

<number>

Comment

Field is not
indexed.

For string custo
m fields with
annotation text-
type and value
textarea.
<rows> defines
the number of
displayed rows
and <cols>
defines the
number of
characters
displayed per
row. Used only
for layout
purposes.

For enum
custom fields.
Defines how
many values
are directly
visible in the list
box. Used only
for layout
purposes.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

211

Name

format

G groupable

Annotation
Type

validation

cmweb-commo
n

Description

Used to check
the correct
format of date
fields.

Enables
grouping in the
ticket list.

Values

<date format>

true

Comment

The pattern for
the date is
based on Simpl
eDateFormat,
e.g.
dd.mm.yyyy.

Remember to
set the proper ¢
olspan when
you want to
add
hours/minutes.
See http://docs.
oracle.com/jav
ase/6/docs/apilj
avaltext/Simple
DateFormat.ht
ml for date
format
reference.

Used only with
enum custom
fields. Remove
the annotation
if you want to
disable

grouping.

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

212 ConSol*CM Process Designer Manual (CM up to version 6.9.3)
Name Annotation Description Values Comment
Type

L label-group layout Indicates a <string> Indicates a
group of fields group of
along with its custom fields
descriptive along with its
label in view m descriptive
ode. Annotation label. The

is ignored in edi
t mode.

annotation is
used in present
ation mode,
ignored in edit
mode. The
group can have
exactly one
label (a custom
field of type stri
ng with
assigned
additional
annotation text-
type with value
label). The
label is shown
when at least
one custom
field from its
group has a
value set. All
fields with the
same label
value are
grouped and
displayed
under this
label.

The annotation
label-group has
to be assigned
to the label,
too.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

213

Name

label-in-view

Idapid

only version
6.9 and higher

leave-trailing-z
eros

Annotation
Type

layout

contact
authentication

common

Description Values

Shows custom true
field value as a

label in view m

ode. Annotation

is ignored in edi

t mode.

Used in a data
object group of
type customer,
for the data
object group
field which
contains the
LDAP ID for
CM/Track
authentication.

Used for the
display of fixed
point numbers.

true / false

Comment

Remove the
annotation if
the label should
not be visible in
view mode.

Indicates that
this field will be
used as an
LDAP ID in the
authentication
process. Data
type string is
required.
Since the
definition is
made on
customer group
level, the LDAP
authentication
can berunin
mixed mode.
l.e. use LDAP
for some
customer
groups and
regular
authentication
for other
customer
groups.

Remaining
zeros of the
fractional part
are not cut off
when value is tr
ue.

214 ConSol*CM Process Designer Manual (CM up to version 6.9.3)
Name Annotation Description Values Comment
Type
list-type component-typ Disables the ad fixed-size Itis not
e d and/or delete possible to add
options for or delete
custom fields of fields/rows.
type list or stru
ct.
non-shrinkable It is not
possible to
delete
fields/rows.
non-growable Itis not
possible to add
fields/rows.
M matches validation Checks if input ~ <string> May be used
of string custo with string cust
m fields om fields.
matches the
given RegEx.
maxLength validation Defines the <number> May be used
maximum with string cust
length of input om fields.
for string custo
m fields.
maxValue validation Defines the <number> May be used
maximum value with number cu
for number cust stom fields, i.e.
om fields. number and fix
ed-point
number.
minLength validation Defines the <number> May be used
minimum with string cust
length of input om fields.

for string custo
m fields.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

215

Name
minValue
N no-history-field
@) order-in-result
P password
position

Annotation
Type

validation

performance

layout

contact
authentication

layout

Description

Defines the
minimum value
for number cust
om fields.

Indicates that a
single custom
field should not
be historized.
Overwrites the
group
annotation no-h
istory.

Shows field as
a column in the
search result
list at given
position.

Indicates that
this field will be
used as a
password in the
authentication
process.

Defines the
position of a
field within a
grid layout.

Values

<number>

true / false

<number>

<string>

<number>;<nu
mber>

Comment

May be used
with number cu
stom fields, i.e.
number and fix
ed-point
number.

Annotation is
active if value
is set to true.
For fields that
should be
stored but not
be visible in
history use
annotation visib
ility
configuration.

The columns
are sorted in
ascending
order.

Used for
CM/Track.

Values define r
ow and column
(row;column),
numbering
starts at 0;0. If
no values are
set, the custom
field will take
the next free
grid cell.

216 ConSol*CM Process Designer Manual (CM up to version 6.9.3)
Name Annotation Description Values Comment
Type
Defines the 0;<number> Only the colum
position of a nvalue is used,
field within a list the row value is
(struct). ignored.

R readonly common Used to true / false Field is read
indicate that only if value is
the custom field set to true.
cannot be Lack of value
modified. or any value

except false is
also treated as
true.
reportable dwh Indicates that true / false Field is
the field is reportable if
reportable and value is set to tr
that it should ue.
be transferred
to the DWH.
required validation Indicates that true / false Field is
thisiis a required if
required field. value is set to tr
ue. The user
cannot save
the ticket
without having
entered a value
in a required
field. In the
Web Client,
required fields
are marked by
a red asterisk.
rowspan layout Indicates how <number> Number of
many rows rows.
within the
layout are
occupied by

this field.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 217

Name Annotation Description Values Comment
Type
S sortable cmweb-commo Used to enable true Used for
n sorting of the custom fields of
ticket list. type DATE or

of type enum.
Remove the
annotation if
you want to

disable sorting.
For enum fields
: Works only if
order index is
set for all
values of the e
num field.

T text-type component-typ Defines the text (default) Single-line
e possible types input field.
of a string field.

textarea Multi-line input
field.

password Input field for
passwords.
Password will
be displayed as
*kkkkhkk in ViE'W
mode.

label Input will be
displayed as a
label, i.e. the
field is
displayed only,
no input is
possible.

218 ConSol*CM Process Designer Manual (CM up to version 6.9.3)
Name Annotation Description Values Comment
Type
url Input will be
displayed as
URL in view mo
de. String has
to match the
following
pattern:
"N((?:mailto\:](?:
(?:ht|f)tps?)\://)
NS+H)(?: (7|
)2(1)?$"
Example:
"http://consol.d
e ConSol*"
ticket-list-colsp layout Defines how <number> Number of
an many columns columns.
are occupied
by the field in
the ticket list
box.
ticket-list-positi layout Defines the <number>;<nu Values define r
on position of the mber> ow and column
field in the (row;column),
ticket list box. numbering
starts at 0;0.
ticket-list-rowsp layout Defines how <number> Number of
an many rows are rows.
occupied by the
field in the
ticket list box.
U username contact Indicates that true / false Used for
authentification this field will be CM/Track.
used as a login
name in the
authentication

process.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 219

Name Annotation Description Values Comment
Type
V visibility common Defines when edit Field will be
the field is displayed in edi
visible. t mode.
view Field will be
displayed in vie
w mode.
none Field is not
visible.

If any other or
no value is set

the field will
always be
visible.
visibility visibility Indicates the on every level Field is shown
configuration visibility of this on every level
field in history. of history.

2nd level and Field is shown

3rd level only on the 2nd
and the 3rd
level of history.

only 3rd level Field is shown
only on the 3rd
level of history.

220 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

9.2 Alphabetical List of Group Annotations (Version 6.8
and Older)

Name Annotation Description Values Comment
Type
C contact history ticket contact Describes the <template Format is
template name relation contact name> specified within
information the template
shown in ticket definition.
history. Name of
template is
referenced
here.
contact-templat contact-templat Used to display <template Format is
e-contact-ticket es short name> specified within
-page information the template
about a contact definition.
in the ticket and Name of
contact pages. template is
referenced
here.
If this
annotation is
not configured,
contact-templat
e-default will be
used.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

221

Name

contact-templat
e-default

contact-templat
e-dragged

Annotation
Type

contact-templat
es

contact-templat
es

Description

Used to display <template

short
information
about contacts.

Used to display <template

short
information
about a contact
when contact is
dragged.

Values

name>

name>

Comment

Format is
specified within
the template
definition.
Name of
template is
referenced
here.

If this
annotation is
not configured,
deprecated unit
search
template name
will be used.

Format is
specified within
the template
definition.
Name of
template is
referenced
here.

If this
annotation is
not configured,
contact-templat
e-default will be
used.

222

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Name

contact-templat
e-email

contact-templat
e-quick-search

contact-templat
e-search

Annotation
Type

contact-templat
es

contact-templat
es

contact-templat
es

Description Values

Used to display <template
short name>
information

about a contact

for

auto-completio

n of e-mail

addressee.

Used to display = <template
short name>
information

about a contact

in the quick

search result

list.

Used to display <template
short name>
information

about a contact

in the contact

search result

list.

Comment

Format is
specified within
the template
definition.
Name of
template is
referenced
here.

If this
annotation is
not configured,
contact-templat
e-default will be
used.

Format is
specified within
the template
definition.
Name of
template is
referenced
here.

If this
annotation is
not configured,
contact-templat
e-default will be
used.

Format is
specified within
the template
definition.
Name of
template is
referenced
here.

If this
annotation is
not configured,
contact-templat
e-default will be
used.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

223

Name

contact-templat
e-ticket-list

contact-templat
e-ticket-referen
ce

contact-templat
e-ticket-search

Annotation
Type

contact-templat
es

contact-templat
es

contact-templat
es

Description Values

Used to display <template
short name>
information

about a contact

in the ticket list.

Used to display = <template
short name>
information

about a contact

in the ticket

reference

section.

Used to display
short
information
about a contact
in the ticket
search result
list.

<template
name>

Comment

Format is
specified within
the template
definition.
Name of
template is
referenced
here.

If this
annotation is
not configured,
contact-templat
e-default will be
used.

Format is
specified within
the template
definition.
Name of
template is
referenced
here.

If this
annotation is
not configured,
contact-templat
e-default will be
used.

Format is
specified within
the template
definition.
Name of
template is
referenced
here.

If this
annotation is
not configured,
contact-templat
e-default will be
used.

224 ConSol*CM Process Designer Manual (CM up to version 6.9.3)
Name Annotation Description Values Comment
Type
contact-templat = contact-templat Used to display <template Format is
e-workspace-fa es short name> specified within
vourite information the template
about a contact definition.
in the Name of
workspace and template is
favourites referenced
sections. here.
If this
annotation is
not configured,
contact-templat
e-default will be
used.
G group-visibility ~ common Defines the true / false The annotation
default visibility can be
of a custom overwritten on
field group. field level.
N no-history performance Indicates that true / false Possible values

all custom
fields belonging
to this group
will not be
historized.

are true if this
annotation
should be
active or false
which is the
same like
removing the
annotation. Use
this annotation
if you want to
prevent history
for all/many
fields in a
group. If you
only want to
prevent
historization for
a single/some
field(s), use the
annotation no-h
istory-field on
field level.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

225

Name

open-at-create

reportable
group

show-contact-i
n-ticket-list

show-in-group-
section

unit is a contact ticket contact

Annotation
Type

layout

dwh

layout

layout

relation

Description

Allows custom
field groups to
be visible
during ticket
creation even if
they are
hidden.

Indicates that
all custom
fields belonging
to this group
are reportable
and should be
transferred to
CMRF.

Indicates that
the custom field
group (contact)
should be
shown in the
ticket list.

Defines that a
custom field
group is
displayed in the
Groups section.

Indicates that
the custom field
group
describes
contact data.

Values

true

true / false

true

true

true / false

Comment

Remove the
annotation if
the group
should not be
visible.

A value has to
be set.
Annotation is
active if value
is set to true.

This annotation
can only be
assigned to
groups with the
annotation unit
is a contact.
Remove the
annotation if
the contact
should not be
shown in the
ticket list.

Without this
annotation the
group is shown
in the ticket
header.

Group is shown
with contact
when true or
with ticket
when false.

226 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Name Annotation Description Values Comment
Type
unit search indexing Template used <template Format is
template name to display short name> specified within
information the template
deprecated about found definition.
contacts. Name of
template is
referenced
here.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

227

9.3 Alphabetical List of Group Annotations (Version 6.9

and Higher)

Name

A auto-open-grou
p

G group-visibility

Annotation
Type

layout

common

Description Values

The group will ticket:.create
be opened

initially. More

than one value
can be entered
as
comma-separat
ed list (can be
used for the cu

stomer annotati
on).
customer:creat
e
customer:view
Defines the true / false
default visibility
of a custom

field group.

Comment

Group is
opened initially
when a new
ticket is
created.

Group is
opened initially
when a new
customer is
created.

Group is
opened when
the customer
(contact or
company) page
is opened.

The annotation
can be
overwritten on
field level.

228 ConSol*CM Process Designer Manual (CM up to version 6.9.3)
Name Annotation Description Values Comment
Type
N no-history performance Indicates that true / false Possible values
all custom are true if this
fields belonging annotation
to this group should be
will not be active or false
historized. which is the
same like
removing the
annotation. Use
this annotation
if you want to
prevent history
for all/many
fieldsin a
group. If you
only want to
prevent
historization for
a single/some
field(s), use the
annotation no-h
istory-field on
field level.
R reportable dwh Indicates that true / false A value has to
group all custom be set.
fields belonging Annotation is
to this group active if value
are reportable is set to true.
and should be
transferred to
CMRF.
S show-contact-i Obsolete! Use obsolete

n-ticket-list

page
customization!

accordionTicke
tList.mainCusto
merDescription
Visible={true,
false}

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

229

Name Annotation
Type

show-in-group- layout
section

U unit is a contact ticket contact

relation
deprecated

Description Values

Definesthata true /false
custom field

group is

displayed in the

Groups section

(as tab).

true/false

Comment

Without this
annotation the
group is shown
in the
non-tabbed
ticket data or
contact section.

Removed in
version 6.9.0.

230 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

10 Appendix B - Glossary

Term Explanation

A Access Rights Permissions of an engineer to
view or make changes to tickets
in the Web Client. Access rights
are always assigned to a group,
never to single engineers/users.

ACIM Activity item - entry in the history
section of a ticket (e.g. comment,
e-mail, attachment, time booking
entry).

AD Microsoft Active Directory - an
LDAP-based directory service for
Microsoft Windows domain
networks.

Additional customer Customer (contact or company)
besides the main customer, e.g.
an employee of the company. For
additional customers, customer
roles can be assigned.

Admin-Tool Graphical application to configure
and manage a ConSol*CM
system. Uses Java Web Start.

B BI Business Intelligence:
Methods, technologies, and
architectures to transform data
into useful information for
business purposes.

C CMDB ConSol*CM Database - the
working database of the CM
system.

CMRF ConSol*CM Reporting
Framework:

JEE application which
synchronizes data between the
ConSol*CM database and the
DWH.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 231

Term Explanation

CM/Office A standard module of
ConSol*CM which enables the
engineer via ConSol*CM/Web
Client to work with MS-Word
documents pre-filled with
ConSol*CM ticket or customer
parameters.

CM/Track Consol*CM web portal:
Provides customer access to the
ConSol*CM system.

Company A data object of type company.
Often this is a real company or
an institution, but it can also be
something else, like a machine or
a ship.

Contact The customer who has a
guestion or service request.

CTI Computer telephony integration,
a description for any technology
that allows interactions on a
telephone and a computer to be
integrated or coordinated

Customer General term for customer
objects in ConSol*CM. A
customer can be a contact or a
company. Technically, a
customer is a data object. The
respective java class is Unit.

D Data object A customer, contact, or a
company. Former Unit.

Data object group A group of fields where data for
customers (contact or company)
can be stored. Similar to custom
field group for ticket data.

Data object group field A field where data for customers
(contact or company) can be
stored. Similar to custom field for
ticket data.

232 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Term Explanation

DWH Data Warehouse:
ConSol*CM database used for
reporting and data analysis.

E Engineer User who has a login to the Web
Client and who has to manage
the tasks defined in the tickets.

ESB Enterprise Service Bus:
Software architecture used for
communication between mutually
interacting software applications
in a service-oriented architecture
(SOA).

ERP system Enterprise Resource Planning:
Often used for this type of
enterprise management software.

ETL Extract Transform Load:
Extracts data from one source
(this can be a database or
another source), transforms it,
and loads it into a database, e.g.
a data warehouse.

F FlexCDM The Flexible Customer Data
Model, the Customer Data Model
which has been introduced in
ConSol*CM in version 6.9. For
each customer group, a specific
customer data model can be

defined.

G GUI Graphical User Interface

| IMAP Internet Message Access
Protocol:

Internet standard protocol to
access e-mail on a remote e-mail
server. Can be used as plain
IMAP or as secure IMAP
(IMAPS). In the latter case the
proper certificates are required.

J Java EE Java Enterprise Edition

http://en.wikipedia.org/wiki/Service-oriented_architecture

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

233

Term
JMS
K KPI
L LDAP
M Mailbox

Main customer

Mule

P PCDS

Pentaho

POP

Explanation

Java Message Service:

Java EE component used to
send messages between JMS
clients.

Key Performance Indicator -
parameter used for performance
measurement for companies,
projects etc.

Lightweight Directory Access
Protocol:

Application protocol to access
and maintain directory
information over an IP network.

Destination to which e-mail
messages are delivered.
Mailboxes are managed on a
mail server. ConSol*CM can
access one or more separate
mailboxes to retrieve e-mails.

The customer who is the main
customer of a ticket. Starting with
ConSol*CM version 6.9, this can
be either a contact or a company.

An open source Java-based
Enterprise Service Bus (ESB).

Page Customization Definition
Section

Pentaho™ is a business
intelligence (BI) suite which is
available as open source version
and as enterprise edition.

Post Office Protocol:

Internet standard protocol to
retrieve e-mails from a remote
server via TCP/IP. Can be used
as plain POP or as secure POP
(POPs). In the latter case the
proper certificates are required.

http://en.wikipedia.org/wiki/LDAP#cite_note-1

234 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Term Explanation

Portal CM/Track:
Provides customer access to
ConSol*CM.

Process Designer Graphical application to model

and program ConSol*CM
workflows. Uses Java Web Start.

Q Queue Comprises tickets from the same
domain and makes sure that all
tickets of this domain are treated
in the same way. A queue always
has one workflow. Access rights
and other parameters are defined
based on queues.

R RDBMS Relational Database
Management System:
E.g. Oracle ®, MS SQL Server ®
, MySQL.

REST Representational State Transfer:
Method to transfer data via a
network, based on HTTP.

Role Defines the access permissions
and views of an engineer.

S Script Program written for a special
run-time environment that can
interpret and automate the
execution of tasks. In
ConSol*CM, scripts are stored in
the Admin-Tool and are stored as
scripts for activities in workflows.

SMTP Simple Message Transfer
Protocol:
Standard protocol to send
e-mails.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

235

Term

T TAPI
Template
Ticket

\Y View

w Workflow

Explanation

Telephony Application
Programming Interface, a
Microsoft Windows API, which
provides computer telephony
integration and enables PCs
running Microsoft Windows to
use telephone services

Pre-formatted example
concerning layout, text, and/or
data, e.g. for e-mails or
CM/Office.

Incident, service case, or other
request of an internal or external
customer. A ticket is the object
which runs through the process
(defined by the workflow).

A selection of tickets based on
scopes from one or from different
workflows, assigned to a role,
and visible in the ticket list of the
ConSol*CM/Web Client.

Models a process that should be
managed using ConSol*CM step
by step.

236 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

11 Appendix C - System Properties

The lists provide explanation for all available ConSol*CM system properties. You can define properties in the
Admin-Tool, in the Configuration section.

® Appendix C - System Properties
® System Properties Ordered by Module
® System Properties Ordered by Property Name

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

237

11.1 System Properties Ordered by Module

Module

cmas-app-admin-tool

cmas-app-admin-tool

cmas-core-cache

cmas-core-cache

Property

admin.tool.session.check.interval

autocomplete.enabled

only version 6.9 and higher

cache-cluster-name

eviction.event.queue.size

Explanation

Description: Admin-Tool inactive
(ended) sessions check time
interval (in seconds)

Type: Integer

Restart required: Yes

System: Yes

Optional: No

Example value: 30

Since: 6.7.5

Description: If the flag is missing
or its value is false, then the Auto
complete address tab is hidden in
AT.

Type: Boolean

Restart required: No

System: Yes

Optional: Yes

Example value: true

Since: 6.9.2.0

Description: JBoss cache cluster
name

Type: String

Restart required: Yes

System: Yes

Optional: No

Example value: 635a6de1-629a-
4129-8299-2d98633310f0
Since: 6.4.0

Description:

Type: Integer

Restart required: Yes
System: Yes

Optional: No

Example value: 200000
Since: 6.4.0

238 ConSol*CM Process Designer Manual (CM up to version 6.9.3)
Module Property Explanation
cmas-core-cache eviction.max.nodes Description:

cmas-core-cache

cmas-core-index-common

cmas-core-index-common

cmas-core-index-common

eviction.wakeup.interval

big.task.minimum.size

disable.admin.task.auto.commit

index.attachment

Type: Integer

Restart required: Yes
System: Yes

Optional: No

Example value: 100000
Since: 6.4.0

Description:

Type: Integer
Restart required: Yes
System: Yes
Optional: No
Example value: 3000
Since: 6.4.0

Description: How many parts task
at least should have to be
handled by indexer with low
priority.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 15 (default)
Since: 6.8.3

Description: All tasks created for
index update will be automatically
executed right after creation.
Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: false

Since: 6.6.1

Description: Describes if content
of attachments is indexed.

Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: true

Since: 6.4.3

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

239

Module Property
cmas-core-index-common index.history
cmas-core-index-common index.status
cmas-core-index-common index.task.worker.threads
cmas-core-index-common index.version.current

Explanation

Description: Describes if unit and
ticket history are indexed.

Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: false

Since: 6.1.0

Description: Status of the
indexer, possible values RED,
YELLOW, GREEN, will be
displayed in the Admin-Tool.
Type: String

Restart required: No

System: Yes

Optional: No

Example value: GREEN
Since: 6.6.1

Description: How many threads
will be used to execute batch
index tasks (synchronization,
administrative, and repair tasks).
Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 1 (default) (we
recommend to use a value not
larger than 2)

Since: 6.6.14, 6.7.3

Description: Holds information
about current (possibly old) index
version.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 1 (default)
Since: 6.7.0

240

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-core-index-common

cmas-core-index-common

cmas-core-index-common

cmas-core-index-common

Property

index.version.newest

indexed.assets.per.thread.in.me
mory

indexed.engineers.per.thread.in.

memory

indexed.tickets.per.thread.in.me
mory

Explanation

Description: Holds information
about which index version is
considered newest.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 1 (default)
Since: 6.7.0

Description: How many assets
should be loaded into memory at
once during indexing per one
thread.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 200 (default)
Since: 6.8.0

Description: How many
engineers should be loaded into
memory at once during indexing
per one thread.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 300 (default)
Since: 6.6.14, 6.7.3

Description: How many tickets
should be loaded into memory at
once during indexing per one
thread.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 100 (default)
Since: 6.6.14, 6.7.3

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

241

Module

cmas-core-index-common

cmas-core-index-common

cmas-core-index-common

Property

indexed.units.per.thread.in.memo
ry

synchronize.master.address

synchronize.master.security.toke
n

Explanation

Description: How many units
should be loaded into memory at
once during indexing per one
thread.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 200 (default)
Since: 6.6.14, 6.7.3

Description: Value of -Dcmas.http
.host.port informing how to
connect to indexing master
server. Default null. Since 6.6.17
this value is configurable in setup
to designate initial indexing
master server. Please note that
changing this value is only
allowed when all cluster nodes
index changes receivers are
stopped.

Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 127.0.0.1:80
Since: 6.6.0

Description: The password for
accessing the index snapshot via
URL, e.g. for index
synchronizaton or for back-ups.
Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: token

Since: 6.6.0

242

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-core-index-common

cmas-core-index-common

cmas-core-index-common

Property

synchronize.master.security.user

synchronize.master.timeout.minu
tes

synchronize.megabits.per.second

Explanation

Description: The user name for
accessing the index snapshot via
URL, e.g. for index
synchronizaton or for back-ups.
Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: user

Since: 6.6.0

Description: How much time
master server may constantly fail
until new master gets elected
with index fix procedure. Default
5. Since 6.6.17 this value is
configurable in setup where zero
means that master server will
never change (failover
mechanism is off).

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 5

Since: 6.6.0

Description: How much
bandwidth can master server
consume to transfer index
changes to all slave servers.
Default 85. Please do not use all
available bandwidth to transfer
index changes between hosts.
This will most probably partition
cluster as some subsystems will
not be able to communicate.
Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 85

Since: 6.6.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 243

Module Property Explanation

cmas-core-index-common synchronize.sleep.millis Description: How often each
slave server polls master server
for index changes. Default 1000.
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 1000
Since: 6.6.0

cmas-core-security admin.email Description: The e-mail address
of the ConSol*CM administrator.
The value which you have
entered during system set-up is
used initially.
Type: String
Restart required: No
System: Yes
Optional: No
Example value: maz@-consol.de
Since: 6.0

cmas-core-security admin.login Description: The name of the
ConSol*CM administrator. The
value which you have entered
during system set-up is used
initially.
Type: String
Restart required: No
System: Yes
Optional: No
Example value: admin
Since: 6.0

cmas-core-security authentication.method Description: User authentication
method (internal CM database or
LDAP authentication). Allowed
values are LDAP or DATABASE.
Type: String
Restart required: No
System: Yes
Optional: No
Example value: DATABASE
Since: 6.0

244

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-core-security

cmas-core-security

cmas-core-security

cmas-core-security

Property

contact.authentication.method

only version 6.9 and higher

contact.inherit.permissions.only.t
0.own.customer.group

only version 6.9 and higher

kerberos.v5.enabled

kerberos.v5.username.regex

Explanation

Description: Indicates contact
authentication method, where
possible values are DATABASE
or LDAP or LDAP,DATABASE or
DATABASE,LDAP.

Type: String

Restart required: No

System: Yes

Optional: No

Since: 6.9.3.0

Description: Indicates whether
authenticated contact inherits all
customer group permissions from
representing engineer (false) or
only permission to own customer
group (true).

Type: Boolean

Restart required: No

System: Yes

Optional: No

Since: 6.9.2.3

Description: Flag which indicates
whether SSO via Kerberos is
enabled.

Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: false (default if
Kerberos has not been enabled
during system set-up)

Since: 6.2.0

Description: Regular expression
used for mapping Kerberos
principal to CM user login.
Type: String

Restart required: No

System: Yes

Optional: No

Example value: (*)@.*

Since: 6.2.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 245

Module Property Explanation

cmas-core-security Idap.authentication Description: Authentication
method used when using LDAP
authentication.
Type: String
Restart required: Yes
System: Yes
Optional: No
Example value: simple
Since: 6.0

cmas-core-security Idap.basedn Description: Base DN used for
looking up LDAP user accounts
when using LDAP authentication.
Type: String
Restart required: No
System: Yes
Optional: No
Example value: OU=accounts,D
C=consol,DC=de
Since: 6.0

cmas-core-security Idap.contact.name.basedn Description: Base path to search
for contact DN by LDAP ID (e.g.
ou=accounts,dc=consol,dc=de).
Type: String

Restart required: No

System: No

Optional: Yes

Since: 6.9.3.0

only version 6.9 and higher

cmas-core-security Idap.contact.name.password Description: Password to lookup
contact DN by LDAP ID. If not
set, anonymous account is used.
Type: String

Restart required: No

System: No

Optional: Yes

Since: 6.9.3.0

only version 6.9 and higher

246 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-security Idap.contact.name.providerurl Description: Address of the LDAP
server (Idap[s]://host:port).

Type: String

Restart required: No

System: No

Optional: Yes

Since: 6.9.3.0

only version 6.9 and higher

cmas-core-security Idap.contact.name.searchattr Description: Attribute to search
for contact DN by LDAP ID (e.qg.
only version 6.9 and higher uid).
Type: String
Restart required: No
System: No
Optional: Yes
Since: 6.9.3.0

cmas-core-security Idap.contact.name.userdn Description: User DN to lookup
contact DN by LDAP ID. If not
set, anonymous account is used.
Type: String

Restart required: No

System: No

Optional: Yes

Since: 6.9.3.0

only version 6.9 and higher

cmas-core-security Idap.initialcontextfactory Description: Class name for initial
context factory of LDAP
implementation when using
LDAP authentication. If it is not
set,
com.sun.jndi.ldap.LdapCtxFactor
y is being used as a value.
Type: String
Restart required: Yes
System: Yes
Optional: No
Example value: com.sun.jndi.lda
p.LdapCtxFactory
Since: 6.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 247

Module Property Explanation

cmas-core-security Idap.password Description: Password for
connecting to LDAP to lookup
users (when using LDAP
authentication). Only needed if
lookup cannot be done
anonymously.
Type: Password
Restart required: No
System: Yes
Optional: Yes
Since: 6.1.2

cmas-core-security Idap.providerurl Description: LDAP provider
(when using LDAP
authentication).
Type: String
Restart required: No
System: Yes
Optional: No
Example value: |dap://ldap.conso
l.de:389
Since: 6.0

cmas-core-security Idap.searchattr Description: Search attribute for
looking up LDAP entry connected
to CM6 login.
Type: String
Restart required: No
System: Yes
Optional: No
Example value: uid
Since: 6.0

cmas-core-security Idap.userdn Description: LDAP user for
connecting to LDAP to lookup
users (when using LDAP
authentication). Only needed if
lookup cannot be done
anonymously.
Type: String
Restart required: No
System: Yes
Optional: Yes
Since: 6.1.2

248 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-server attachment.allowed.types Description: Comma-separated
list of allowed filename
extensions (if no value defined,
all file extensions are allowed).
Type: String
Restart required: No
System: Yes
Optional: Yes
Example value: txt,zip,doc
Since: 6.5.0

cmas-core-server attachment.max.size Description: Maximum
attachment size in MB
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 100
Since: 6.4.0

cmas-core-server config.data.version Description:
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 11
Since: 6.0

cmas-core-server defaultCommentClassName Description: Default text class
name for comments
Type: String
Restart required: No
System: No
Optional: Yes
Example value:
Since: 6.3.0

cmas-core-server defaultincommingMailClassName Description: Default text class
name for incoming mails
Type: String
Restart required: No
System: No
Optional: Yes
Example value:
Since: 6.3.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

249

Module

cmas-core-server

cmas-core-server

cmas-core-server

cmas-core-server

Property

defaultOutgoingMailClassName

fetchSize.strategy

fetchSize.strategy.FetchSizeFixe
dStrategy.value

fetchSize.strategy.FetchSizePag
eBasedStrategy.limit

Explanation

Description: Default text class
name for outgoing mails
Type: String

Restart required: No

System: No

Optional: Yes

Example value:

Since: 6.3.0

Description: Strategy selected to
set fetch size on jdbc result sets.
Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: FetchSizePageB
asedStrategy,
FetchSizeThresholdStrategy,
FetchSizeFixedStrategy

Since: 6.8.4.1

Description: Sets fetch size value
if selected strategy to set fetch
size is FetchSizeFixedStrategy.
Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 150

Since: 6.8.4.1

Description: Sets max fetch size
value if selected strategy to set
fetch size is FetchSizePageBase
dStrategy.

Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 10000

Since: 6.8.4.1

250

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-core-server

cmas-core-server

cmas-core-server

cmas-core-server

Property

fetchSize.strategy.FetchSizeThre
sholdStrategy.value

last.config.change

Idap.certificate.basedn

Idap.certificate.content.attribute

Explanation

Description: Sets fetch size
threshold border values if
selected strategy to set fetch size
is FetchSizeThresholdStrategy.
Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 150,300,600,100
0

Since: 6.8.4.1

Description: Random UUID
created during last change in
config

Type: String

Restart required: No

System: Yes

Optional: No

Example value: 2573c7b7-2bf5-4
7ff-b5a2-bad31951a266

Since: 6.1.0,6.2.1

Description: Base DN for
certificates location in LDAP tree.
If not provided, Idap.basedn is
taken.

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: OU=accounts,D
C=consol,DC=de

Since: 6.8.4

Description: LDAP attribute name
used where certificate data is
stored in LDAP tree. Default
value is: usercertificate.

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: usercertificate
Since: 6.8.4

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

251

Module Property
cmas-core-server Idap.certificate.password
cmas-core-server Idap.certificate.providerurl
cmas-core-server Idap.certificate.searchattr
cmas-core-server Idap.certificate.userdn

Explanation

Description: LDAP Certificates
manager password. If not set,
Idap.password is taken.

Type: String

Restart required: No

System: Yes

Optional: Yes

Since: 6.8.4

Description: LDAP Certificates
provider URL. If not set,
Idap.providerurl is taken.

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: |dap://ldap.conso
l.de:389

Since: 6.8.4

Description: LDAP attribute name
used to search for certificate in
LDAP tree. Default value is: mail.
Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: malil

Since: 6.8.4

Description: LDAP Certificates
manager DN. If not set,
Idap.userdn is taken.

Type: String

Restart required: No

System: Yes

Optional: Yes

Since: 6.8.4

252

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-core-server

cmas-core-server

cmas-core-server

cmas-core-server

Property

mail.notification.engineerChange

mail.notification.sender

mail.smtp.email

mail.smtp.envelopesender

Explanation

Description: Flag if notification
mail should be sent when
engineer of ticket is changed.
Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: true

Since: 6.1.0

Description: From address for
notification mails when engineer
of ticket is changed. If not set, cm
as-core-security admin.email is
used instead.

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: cm6notification@
cmeéinstallation

Since: 6.6.3

Description: SMTP mail URL for
outgoing mails

Type: String

Restart required: No

System: Yes

Optional: No

Example value: smtp://mail.cons
ol.de:25

Since: 6.0

Description: Mail address used
as sender in SMTP envelope. If
not set, the From: address of the
mail is used.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: mysender@myd
omain.com

Since: 6.5.7

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

253

Module

cmas-core-server

cmas-core-server

cmas-core-server

cmas-core-server

Property

max.licences.perUser

monitoring.engineer.login

only version 6.9 and higher

monitoring.unit.login

only version 6.9 and higher

server.session.archive.reaper.int
erval

Explanation

Description: Sets max licenses
single user can use (e.g logging
in from different browsers). By
default this value is not restricted.
Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 10

Since: 6.8.4.5

Description: Login of monitoring
engineer

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: bartek

Since: 6.9.3.0

Description: Login of monitoring
unit

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: bartek

Since: 6.9.3.0

Description: Server archived
sessions' reaper interval (in
seconds)

Type: Integer

Restart required: No
System: Yes

Optional: Yes

Example value: 60

Since: 6.7.1

254 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-server server.session.archive.timeout Description: Server sessions
archive validity timeout (in days).
After this time session info is
removed from DB.
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 31
Since: 6.7.1

cmas-core-server server.session.reaper.interval Description: Server inactive
(ended) sessions' reaper interval
(in seconds)
Type: Integer
Restart required: Only Session
Service
System: Yes
Optional: No
Example value: 60
Since: 6.6.1, 6.7.1

cmas-core-server server.session.timeout Description: Server session
timeout (in seconds) for
connected clients. Each client
can overwrite this timeout with
custom value using its ID
(ADMIN_TOOL, WEB_CLIENT,
WORKFLOW_EDITOR, TRACK
(before 6.8 please use
PORTER), ETL, REST)
appended to property name, e.g.
server.session.timeout. ADMIN_T
OoOoL
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 1800
Since: 6.6.1, 6.7.1

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

255

Module

cmas-core-server

cmas-core-server

cmas-core-server

cmas-core-server

Property

tickets.delete.size

ticket.delete.timeout

unit.replace.batchSize

unit.replace.timeout

Explanation

Description: Property that defines
a number of tickets deleted per
transaction. By default it is set to
10.

Type: Integer

Restart required: Only Session
Service

System: Yes

Optional: No

Example value: 10

Since: 6.8.1

Description: Transaction timeout
(in seconds) for deleting tickets
Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 60

Since: 6.1.3

Description: Describes number of
objects to be processed in unit
replace action.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 5

Since: 6.8.2

Description: Transaction timeout
(seconds) of unit replacement
action step.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 120

Since: 6.8.2

256

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-core-server

cmas-core-server

cmas-core-server

Property

unused.content.remover.cluster.n
ode.id

only version 6.9 and higher

unused.content.remover.enabled

only version 6.9 and higher

unused.content.remover.polling.
minutes

only version 6.9 and higher

Explanation

Description: Value of a
cmas.clusternode.id designating
node which will remove unused
ticket attachments and unit
content entries.

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: 1 (assuming
cluster node started with
-Dcmas.clusternode.id=1
parameter)

Since: 6.9.0.0

Description: Flag whether unused
ticket attachments and unit
content entries removal should
take place.

Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: true

Since: 6.9.0.0

Description: How often unused
ticket attachments and unit
content entries should be
checked for removal.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 15

Since: 6.9.0.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

257

Module

cmas-core-server

cmas-core-shared

cmas-core-shared

cmas-dwh-server

Property

unused.content.remover.ttl. minut
es

only version 6.9 and higher

cluster.mode

data.directory

autocommit.cf.changes

Explanation

Description: Minimum interval
after which unused ticket
attachments and unit content
entries can be removed.
Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 1440

Since: 6.9.0.0

Description: Flag if CMAS is
running in cluster.

Type: Boolean

Restart required: Yes
System: Yes

Optional: No

Example value: false

Since: 6.1.0

Description: Directory for CMAS
data (e.g. index)

Type: String

Restart required: No

System: Yes

Optional: No

Example value: C:\Users\user\cm
as

Since: 6.0

Description:

Type: Boolean
Restart required: No
System: Yes
Optional: No
Example value: false
Since: 6.7.0

258 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-dwh-server batch-commit-interval Description: Number of objects in
a JMS message. Higher value
means better transfer
performance and bigger memory
usage.
Type: Integer
Restart required: No
System: Yes
Optional: Yes
Example value: 100
Since: 6.0.0

cmas-dwh-server dwh.mode Description: Current mode of
DWH data transfer. Possible
values are OFF, ADMIN, LIVE
Type: String
Restart required: No
System: Yes
Optional: No
Example value: OFF
Since: 6.0.1

cmas-dwh-server ignore-queues Description: By adding a comma
separated list of queue names it
is configured that tickets of these
gueues are not transferred to the
DWH.
Type: String
Restart required: No
System: Yes
Optional: Yes
Example value: QueueNamel,Q
ueueName2,QueueName3
Since: 6.6.19
Removed in: 6.8.1

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 259

Module Property Explanation

cmas-dwh-server is.cmrf.alive Description: As a starting point
time of sending last message to
CMREF should be used. If
response from CMRF is not
received after value (in seconds)
it should create a DWH operation
status with error message that
CMREF is down.
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 1200
Since: 6.7.0

cmas-dwh-server java.naming.factory.initial Description: Factory class for
DWH context factory.
Type: String
Restart required: No
System: Yes
Optional: No
Example value: org.jnp.interfaces
.NamingContextFactory
Since: 6.0.1

cmas-dwh-server java.naming.factory.url.pkgs Description:
Type: String
Restart required: No
System: Yes
Optional: No
Example value: org.jboss.naming
:org.jnp.interfaces
Since: 6.0.1

cmas-dwh-server java.naming.provider.url Description: URL of naming
provider
Type: String
Restart required: No
System: Yes
Optional: No
Example value: localhost
Since: 6.0.1

260

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

Property

notification.error.description

notification.error.from

notification.error.subject

notification.error.to

notification.finished_successfully.

description

Explanation

Description: Text for error mails
from DWH

Type: String

Restart required: No

System: Yes

Optional: No

Example value: Error occurred
Since: 6.0.1

Description: From address for
error mails from DWH

Type: String

Restart required: No

System: Yes

Optional: Yes

Since: 6.0.1

Description: Subject for error
mails from DWH

Type: String

Restart required: No

System: Yes

Optional: No

Example value: Error occurred
Since: 6.0.1

Description: To address for error
mails from DWH

Type: String

Restart required: No

System: Yes

Optional: No

Example value: maz@consol.de
Since: 6.0.1

Description: Text for mails from
DWH when transfer finished
successfully.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: Transfer finished
successfully

Since: 6.0.1

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

261

Module

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

Property

notification.finished_successfully.
from

notification.finished_successfully.
subject

notification.finished_successfully.
to

notification.finished_unsuccessful
ly.description

Explanation

Description: From address for
mails from DWH when transfer
finished successfully.

Type: String

Restart required: No

System: Yes

Optional: Yes

Since: 6.0.1

Description: Subject for mails
from DWH when transfer finished
successfully.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: Transfer finished
successfully

Since: 6.0.1

Description: To address for mails
from DWH when transfer finished
successfully.

Restart required: Yes

System: Yes

Optional: No

Example value: maz@consol.de

Since: 6.0.1

Description: Text for mails from
DWH when transfer finished
unsuccessfully.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: Transfer finished
unsuccessfully

Since: 6.0.1

262

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

Property

notification.finished_unsuccessful
ly.from

notification.finished_unsuccessful
ly.subject

notification.finished_unsuccessful
ly.to

notification.host

Explanation

Description: From address for
mails from DWH when transfer
finished unsuccessfully.

Type: String

Restart required: No

System: Yes

Optional: Yes

Since: 6.0.1

Description: Subject for mails
from DWH when transfer finished
unsuccessfully.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: Transfer finished
unsuccessfully

Since: 6.0.1

Description: To address for mails
from DWH when transfer finished
unsuccessfully.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: maz@-consol.de

Since: 6.0.1

Description: Mail (SMTP) server
hostname for sending DWH mails
Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: mail.consol.de
Since: 6.1.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

263

Module

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

Property

notification.password

notification.port

notification.protocol

notification.username

skip-ticket

Explanation

Description: Password for
sending DWH mails (optional)
Type: String

Restart required: No

System: Yes

Optional: Yes

Since: 6.1.0

Description: SMTP port for
sending DWH mails

Type: String

Restart required: No
System: Yes

Optional: Yes

Example value: 25

Since: 6.1.0

Description: The protocol used
for sending emails from DWH.
Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: pop3\

Description: (SMTP) User name
for sending DWH mails

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: maz

Since: 6.1.0

Description: Tickets are not
transferred during
transfer/update.

Type: Boolean

Restart required: No
System: Yes

Optional: No

Example value: false
Since: 6.6.19

Removed in: 6.8.1

264 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-dwh-server skip-ticket-history Description: History of ticket is
not transferred during
transfer/update.

Type: Boolean
Restart required: No
System: Yes
Optional: No
Example value: false
Since: 6.6.19
Removed in: 6.8.1

cmas-dwh-server skip-unit Description: Units are not
transferred during
transfer/update.
Type: Boolean
Restart required: No
System: Yes
Optional: No
Example value: false
Since: 6.6.19
Removed in: 6.8.1

cmas-dwh-server skip-unit-history Description: History of unit is not
transferred during
transfer/update.
Type: Boolean
Restart required: No
System: Yes
Optional: No
Example value: false
Since: 6.6.19
Removed in: 6.8.1

cmas-dwh-server split.history Description: Changes the SQL
that fetches the history for the
tickets during DWH transfer not
to all tickets at once but only for
one ticket per SQL.
Type: Boolean
Restart required: No
System: Yes
Optional: Yes
Example value: false
Since: 6.8.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

265

Module

cmas-dwh-server

cmas-esb-core

cmas-esb-mail

Property

unit.transfer.order

esb.directory

mail.attachments.validation.info.s
ender

Explanation

Description: Define in which
order unit custom field groups
should be transferred to the
DWH.

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: company;custom
er

Since: 6.6.19

Removed in: 6.8.1

Description: Directory used by
ESB (Mule)

Type: String

Restart required: No

System: Yes

Optional: No

Example value: C:\Users\user\cm
as\mule

Since: 6.0

Description: Sets From header of
attachments type error
notification mail. As a default the
e-mail address of the
administrator which you have
entered during system set-up is
used.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: admin@consolc
m.com

Since: 6.7.5

266

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-esb-mail

cmas-esbh-mail

cmas-esb-mail

cmas-esbh-mail

Property

mail.attachments.validation.info.s
ubject

mail.callname.pattern

mail.cluster.node.id

mail.db.archive

Explanation

Description: Sets subject of
attachments type error
notification mail.

Type: String

Restart required: No
System: Yes

Optional: No

Example value: Mail was not
processed because its
attachments were rejected!!!
Since: 6.7.5

Description: Regular expression
for subject of incoming mails.
Available as
TICKET_NAME_PATTERN_FO
RMAT in incoming mail scripts.
Type: String

Restart required: No

System: Yes

Optional: No

Example value: *?Ticket\s+\((\S+
N).*

Since: 6.0

Description: Only the node
whose mail.cluster.node.id
equals cmas.clusternode.id will
start the Mule ESB mail services.
Type: String

Restart required: No

System: Yes

Optional: No

Example value: unspecified
Since: 6.6.5

Description: If property is set to tr
ue, incoming e-mails are
archived in the database.

Type: Boolean

Restart required: No

System: Yes

Optional: Yes

Example value: false (default)
Since: 6.8.5.5

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

267

Module

cmas-esb-mail

cmas-esb-mail

Property

mail.delete.read

mail.encryption

Explanation

Description: Determines whether
CM deletes messages fetched
via IMAP(S). Setting value to true
will cause deletion of messages
after fetching. Default is to not
delete messages fetched via
IMAP(S). Note: Messages
fetched via POP3(S) will always
be deleted.

Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: true

Since: 6.7.3

Description: If property is set to tr
ue, the encrypt check box in the
Ticket E-Mail Editor is checked
by default.

Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: true (default =
false)

Since: 6.8.4.0

268 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-esb-mail mail.incoming.uri Description: URL for incoming
mails
Type: String
Restart required: No
System: Yes
Optional: No
Example value: pop3://lcm-incomi
ng-user:password@localhost:101
10
Since: 6.0

= This value should not
be edited here using the
system properties
pop-up window, but the
mailboxes should be
configured using the file
card E-mail in the
Admin-Tool (see ConSo
[*CM Administrator
Manual section File
Card E-mail). Using
this standard feature all
entries are controlled -
i.e. for each mailbox
which is added, CM
establishes a test
connection during
mailbox set-up. That
way it is not possible to
enter wrong values.

cmas-esb-mail mail.max.restarts Description: Maximum number of
mail service restarts before giving
up
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 3
Since: 6.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 269

Module Property Explanation

cmas-esb-mail mail.mime.strict Description: If set to false, malil
addresses are not parsed for
strict MIME compliance. Default
is true, which means check for
strict MIME compliance.
Type: Boolean
Restart required: No
System: Yes
Optional: No
Example value: false
Since: 6.6.17, 6.7.3

cmas-esb-mail mail.mule.service Description: From address for
mails sent by Mule service
Type: EMail
Restart required: No
System: Yes
Optional: No
Example value: maz@consol.de
Since: 6.0

cmas-esb-mail mail.polling.interval Description: Mail polling interval
in ms
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 60000
Since: 6.0

cmas-esb-mail mail.process.error Description: To address for error
mails from Mule. As a default the
e-mail address of the
administrator which you have
entered during system set-up is
used.
Type: EMail
Restart required: No
System: Yes
Optional: No
Example value: maz@consol.de
Since: 6.0

270 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-esb-mail mail.process.retry.attempts Description: Number of retries
when processing malil
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 3
Since: 6.0.2

cmas-esb-mail mail.process.timeout Description: Mail processing
timeout in seconds
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 60
Since: 6.1.3

cmas-esb-mail mail.redelivery.retry.count Description: Indicates the number
of retries of re-delivering an
e-mail from the CM system.
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 3
Since: 6.1.0

cmas-setup-hibernate hibernate.dialect Description: The dialect used by
hibernate. Usually set during
initial setup (depending on the
database system).
Type: String
Restart required: No
System: Yes
Optional: No
Example value: org.hibernate.dial
ect.MySQL5InnoDBDialect
Since: 6.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

271

Module

cmas-setup-manager

cmas-setup-scene

Property

initialized

scene

Explanation

Description: Flag if CMAS is
initialized. If this value is missing
or not true, setup will be
performed.

Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: true

Since: 6.0

= Be careful with using
this property!!! When
you set the value to fals
e, the ConSol*CM
server will perform the
system set-up at the
next start, i.e. all data of
the existing system is
lost, including system
properties!!!

Description: Scene file which was
imported during setup (can be
empty).

Type: String

Restart required: No

System: Yes

Optional: No

Example value: viszip:/P:/dist/tar
get/jboss/server/cmas/deploy/cm
-dist-6.5.1-SNAPSHOT .ear/APP-
INF/lib/dist-scene-6.5.1-SNAPSH
OT.jar/META-INF/cmas/scenes/h
elpdesk-sales_scene.jar/

Since: 6.0

272

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-workflow-engine

cmas-workflow-engine

cmas-workflow-engine

cmas-workflow-engine

Property

jobExecutor.adminMail

jobExecutor.idlelnterval.seconds

jobExecutor.jobMaxRetries

jobExecutor.jobMaxRetriesReach
edSubject

Explanation

Description: Mail which will get
notified about job execution
problems (when retry counter is
exceeded).

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: admin@consol.d
e

Since: 6.8.0

Description: Determines how
often job executor thread will look
for new jobs to execute.

Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 5 (default)

Since: 6.8.0

Description:

Type: Integer

Restart required: No
System: Yes

Optional: Yes

Example value: 5 (default)
Since: 6.8.0

Description: (rev.54593)

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: Job max retries
reached. Job was removed!!!
(default)

Since: 6.8.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

273

Module

cmas-workflow-engine

cmas-workflow-engine

cmas-workflow-engine

cmas-workflow-engine

Property

jobExecutor.lockTimeout.second
s

jobExecutor.lockingLimit

jobExecutor.mailFrom

jobExecutor.maxInactivityInterval
.minutes

Explanation

Description: How long the job can
be locked (marked for execution)
by job executor.

Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 360 (default)
Since: 6.8.0

Description: Number of job
locked at once (marked for
execution) by job executor thread
Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 10 (default)
Since: 6.8.0

Description: Mail which will be set
as From header during admin
natifications.

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: jobexecutor@co
nsol.de

Since: 6.8.0

Description: Number of minutes
of allowed job executor inactivity
(e.g. when it is blocked by long
timer execution). After this time
executors threads are restarted.
Type: Integer

Restart required: No

System: Yes

Optional: Yes. Default value is
set to 30 minutes.

Example value: 15 (default)
Since: 6.9.2.0

274

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-workflow-engine

cmas-workflow-engine

cmas-workflow-engine

cmweb-server-adapter

Property

jobExecutor.threads

jobExecutor.timerRetrylnterval.se
conds

jobExecutor.txTimeout.seconds

checkUserOnlinelntervallnSecon
ds

Explanation

Description: Number of job
execution threads

Type: Integer

Restart required: No
System: Yes

Optional: Yes

Example value: 1 (default)
Since: 6.8.0

Description: Determines how
long job executor thread will wait
after job execution error.

Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 10 (default)
Since: 6.8.0

Description: Transaction timeout
used for job execution

Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 60 (default)
Since: 6.8.0

Description: The interval in
seconds to check which users
are online (default 180sec =
3min).

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 180

Since: 6.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

275

Module

cmweb-server-adapter

cmweb-server-adapter

cmweb-server-adapter

Property

cmoffice.enabled

commentRequiredForTicketCreat
ion

customizationVersion

Explanation

Description: Flag if CM/Office is
enabled.

Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: false

Since: 6.4.0

Description: Flag if comment is a
required field for ticket creation.
Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: true (default)
Since: 6.2.0

Description:

Type: String

Restart required: No

System: Yes

Optional: No

Example value: cd58453e-f3cc-4
538-8030-d15e8796a4a7

Since: 6.5.0

276

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmweb-server-adapter

cmweb-server-adapter

Property

data.optimization

defaultContentEntryClassName

Explanation

Description: Defines optimization
to be applied on response data.
So far, the following values are
supported (for setting more than
one value, separate values by '['):
MINIFICATION and
COMPRESSION. MINIFICATION
minifies HTML data by e.g.
stripping whitespaces and
comments. COMPRESSION
applies gzip compression to
HTTP response. (Note: If you are
running in cluster mode and want
to test different configurations in
parallel, you can set different
values for each cluster node by
specifying property
data.optimization.nodeld to
override default property.)

Type: String

Restart required: COMPRESSIO
N can be switched on/off without
restart, MINIFICATION requires
restart.

System: Yes

Optional: Yes

Example value: MINIFICATION|C
OMPRESSION

Description: Default text class for
new acims

Type: String

Restart required: No

System: Yes

Optional: No

Example value: default_class
Since: 6.3.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

277

Module

cmweb-server-adapter

cmweb-server-adapter

cmweb-server-adapter

cmweb-server-adapter

Property

defaultNumberOfCustomFieldsC

olumns

favoritesSizeLimit

globalSearchResultSizeLimit

helpFilePath

Explanation

Description: Default number of
columns for custom fields
Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 3

Since: 6.2.0

Description: Maximum number of
items in favorites list

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 10

Since: 6.0

Description: Maximum number of
items in global (Q&E) search
result

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 10

Since: 6.0

Description: URL for online help.
If not empty, Help button is
displayed in Web Client.

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: http://www.conso
l.de

Since: 6.2.1

278 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmweb-server-adapter hideTicketSubject Description: If set to true, ticket
subject is hidden.
Type: Boolean
Restart required: No
System: Yes
Optional: No
Example value: false
Since: 6.2.1

cmweb-server-adapter mail.from Description: Use this address if
set instead of engineer e-mail
address during mail
conversation.
Type: String
Restart required: No
System: Yes
Optional: Yes
Since: 6.1.2

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

279

Module

cmweb-server-adapter

cmweb-server-adapter

Property

mail.reply.to

mailTemplateAboveQuotedText

Explanation

Description: When set, Web
Client will display reply-to field on
mail send, prefilled with this
value.

Type: String

Restart required: No

System: Yes

Optional: Yes

Since: 6.0.1

= Please see also ConSol
*CM Administrator
Manual section Queue
Administration .
When you set the
REPLY TO address in
the outgoing e-mail
script, the mail.reply.to
system property must
not be set (because it
would overwrite the
configured value)! That
means when you use
one outgoing e-malil
script for a queue you
have to define outgoing
e-mail scripts for all
queues because the ma
il.reply.to property can
no longer be used.

Description: Indicates behavior of
mail template in the Ticket E-Mail
Editor when another mail is
guoted, i.e. forwarded or replied
to.

Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: false

Since: 6.2.4

280

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmweb-server-adapter

cmweb-server-adapter

cmweb-server-adapter

cmweb-server-adapter

Property

maxSizePerPagemaplnMegaByt
es

pagemapLockDurationinSeconds

postActivityExecutionScriptName

queuesExcludedFromGS

Explanation

Description: Maximum size (in
MB) for each Wicket pagemap
Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 15

Since: 6.3.5

Description: Number of seconds
to pass before pagemap is
considered to be locked for too
long.

Type: Integer

Restart required: Yes

System: Yes

Optional: Yes

Example value: 60

Since: 6.7.3

Description: Defines the name for
the script which should be
executed after every workflow
activity (see ConSol*CM
Administrator Manual section Ad
min-Tool Scripts - Default
Workflow Activity Script). If no
script should be executed, leave
the value empty.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: postActivityExec
utionHandler

Since: 6.2.0

Description: Comma-separated
list of queue names which are
excluded from global search.
Type: String

Restart required: No

System: Yes

Optional: Yes

Since: 6.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

281

Module Property
cmweb-server-adapter rememberMeLifetimelnMinutes
cmweb-server-adapter reguest.scope.transaction
cmweb-server-adapter searchPageSize
cmweb-server-adapter searchPageSizeOptions

Explanation

Description: Lifetime for rememb
er me in minutes

Type: Integer

Restart required: Yes

System: Yes

Optional: No

Example value: 1440

Since: 6.0

Description: It allows to disable
request scope transaction. By
default one transaction is used
per request. Setting this property
to false there will cause one
transaction per service method
invocation.

Type: Boolean

Restart required: Yes

System: Yes

Optional: Yes

Example value: true

Since: 6.8.1

Description: Default page size for
search results

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 20

Since: 6.0

Description: Options for page
size for search results

Type: String

Restart required: No

System: Yes

Optional: No

Example value: 10|20|30|40]50|7
5100

Since: 6.0

282 ConSol*CM Process Designer Manual (CM up to version 6.9.3)
Module Property Explanation
cmweb-server-adapter serverPoolinglInterval Description:

cmweb-server-adapter

cmweb-server-adapter

cmweb-server-adapter

cmweb-server-adapter

supportEmail

themeOverlay

ticketListRefreshintervallnSecon
ds

ticketListSizeLimit

Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 5
Since: 6.1.0

Description:

Type: String

Restart required: No
System: Yes
Optional: Yes
Since: 6.0

Description: Name of used theme
overlay

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: kyoEUR

Since: 6.0

Description: Refresh interval for
ticket list (in seconds)

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 180

Since: 6.0

Description: Maximum number of
tickets in ticket list

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 100

Since: 6.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

283

Module

cmweb-server-adapter

cmweb-server-adapter

cmweb-server-adapter

cmweb-server-adapter

Property

unitindexSearchResultSizeLimit

urlLogoutPath

webSessionTimeoutInMinutes

wicketAjaxRequestHeaderFilterE
nabled

Explanation

Description: Maximum number of
units in unit search result (e.g.
when searching for contact)
Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 5

Since: 6.0

Description: URL which is used
when user logs out. (If no value is
set, logout leads to login-mask.)
Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: http://intranet.con
sol.de

Since: 6.3.1

Description: Session timeout in
minutes

Type: Integer

Restart required: Yes

System: Yes

Optional: No

Example value: 180

Removed in: 6.7.1

Replaced by: server.session.time
out

Description: This enables filter for
Wicket AJAX requests, coming
from stale pages with Wicket 1.4
scripting (CM6 pre-6.8.0), after
update to CM6 post-6.8.0.

Type: Boolean

Restart required: Yes

System: Yes

Optional: Yes

Example value: false

Since: 6.8.1

284 ConSol*CM Process Designer Manual (CM up to version 6.9.3)
Module Property Explanation
cmas-workflow-jbpm fetchLock.interval Description:

cmas-workflow-jbpm

cmas-workflow-jbpm

cmas-workflow-jbpm

cmas-workflow-jbpm

fetchLock.timeout

jobExecutor.idleInterval

jobExecutor.jobExecuteRetryNu
mber

jobExecutor.timerRetrylnterval

Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 5000
Removed in: 6.8.0

Description:

Type: Integer

Restart required: No
System: Yes

Optional: No

Example value: 15000
Removed in: 6.8.0

Description:

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 45000
Removed in: 6.8.0

Replaced by: jobExecutor.idleint
erval.seconds

Description:

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 5

Removed in: 6.8.0

Replaced by: jobExecutor.jobMa
xRetries

Description:

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 10000

Removed in: 6.8.0

Replaced by: jobExecutor.timerR
etrylnterval.seconds

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

285

Module

cmas-workflow-jbpm

cmas-workflow-jbpm

cmas-workflow-jbpm

Property

mail.sender.address

outdated.lock.age

refreshTimelnCaseOfConcurrent
RememberMeRequests

Explanation

Description: From address for
mails from the workflow engine
Type: String

Restart required: No

System: Yes

Optional: No

Example value: maz@consol.de
Removed in: 6.8.0

Replaced by: jobExecutor.mailFr
om

Description:

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 60000
Removed in: 6.8.0

Replaced by: jobExecutor.lockTi
meout.seconds

Description: 1t sets the refresh
time (in seconds) after which
page will be reloaded in case of
concurrent remember me request
s. This feature prevents one user
from occupying many licenses.
Please increase that time if
sessions are still occupying.
Type: Integer

Restart required: Yes

System: Yes

Optional: Yes

Example value: 5

Since: 6.8.2

286 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

11.2 System Properties Ordered by Property Name

Module Property Explanation

cmas-core-security admin.email Description: The e-mail address
of the ConSol*CM administrator.
The value which you have
entered during system set-up is
used initially.
Type: String
Restart required: No
System: Yes
Optional: No
Example value: maz@consol.de
Since: 6.0

cmas-core-security admin.login Description: The name of the
ConSol*CM administrator. The
value which you have entered
during system set-up is used
initially.
Type: String
Restart required: No
System: Yes
Optional: No
Example value: admin
Since: 6.0

cmas-app-admin-tool admin.tool.session.check.interval = Description: Admin Tool inactive
(ended) sessions check time
interval (in seconds)
Type: Integer
Restart required: Yes
System: Yes
Optional: No
Example value: 30
Since: 6.7.5

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

287

Module

cmas-core-server

cmas-core-server

cmas-core-security

cmas-dwh-server

Property

attachment.allowed.types

attachment.max.size

authentication.method

autocommit.cf.changes

Explanation

Description: Comma-separated
list of allowed filename
extensions (if no value defined,
all file extensions are allowed).
Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: txt,zip,doc
Since: 6.5.0

Description: Maximum
attachment size in MB
Type: Integer

Restart required: No
System: Yes
Optional: No

Example value: 100
Since: 6.4.0

Description: User authentication
method (internal CM database o
LDAP authentication). Allowed
values are LDAP or DATABASE
Type: String

Restart required: No

System: Yes

Optional: No

Example value: DATABASE
Since: 6.0

Description:

Type: Boolean
Restart required: No
System: Yes
Optional: No
Example value: false
Since: 6.7.0

r

288 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-app-admin-tool autocomplete.enabled Description: If the flag is missing
or its value is false, then the Auto
complete address tab is hidden in
AT.

Type: Boolean

Restart required: No

System: Yes

Optional: Yes

Example value: true

Since: 6.9.2.0

only version 6.9 and higher

cmas-dwh-server batch-commit-interval Description: Number of objects in
a JMS message. Higher value
means better transfer
performance and bigger memory
usage.
Type: Integer
Restart required: No
System: Yes
Optional: Yes
Example value: 100
Since: 6.0.0

cmas-core-index-common big.task.minimum.size Description: How many parts task
at least should have to be
handled by indexer with low
priority.
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 15 (default)
Since: 6.8.3

cmas-core-cache cache-cluster-name Description: JBoss cache cluster
name
Type: String
Restart required: Yes
System: Yes
Optional: No
Example value: 635a6del-629a-
4129-8299-2d98633310f0
Since: 6.4.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

289

Module

cmweb-server-adapter

cmas-core-shared

cmweb-server-adapter

cmweb-server-adapter

cmas-core-server

Property

checkUserOnlinelntervallnSecon
ds

cluster.mode

cmoffice.enabled

commentRequiredForTicketCreat

ion

config.data.version

Explanation

Description: The interval in
seconds to check which users
are online (default 180sec =
3min).

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 180

Since: 6.0

Description: Flag if CMAS is
running in cluster.

Type: Boolean

Restart required: Yes
System: Yes

Optional: No

Example value: false

Since: 6.1.0

Description: Flag if CM/Office is
enabled.

Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: false

Since: 6.4.0

Description: Flag if comment is a
required field for ticket creation.
Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: true (default)
Since: 6.2.0

Description:

Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 11
Since: 6.0

290

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-core-security

cmas-core-security

cmweb-server-adapter

cmas-core-shared

Property

contact.authentication.method

only version 6.9 and higher

contact.inherit.permissions.only.t
0.own.customer.group

only version 6.9 and higher

customizationVersion

data.directory

Explanation

Description: Indicates contact
authentication method, where
possible values are DATABASE
or LDAP or LDAP,DATABASE or
DATABASE,LDAP.

Type: String

Restart required: No

System: Yes

Optional: No

Since: 6.9.3.0

Description: Indicates whether
authenticated contact inherits all
customer group permissions from
representing engineer (false) or
only permission to own customer
group (true).

Type: Boolean

Restart required: No

System: Yes

Optional: No

Since: 6.9.2.3

Description:

Type: String

Restart required: No

System: Yes

Optional: No

Example value: cd58453e-f3cc-4
538-8030-d15e8796a4a7

Since: 6.5.0

Description: Directory for CMAS
data (e.g. index)

Type: String

Restart required: No

System: Yes

Optional: No

Example value: C:\Users\user\cm
as

Since: 6.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

291

Module

cmweb-server-adapter

cmas-core-server

Property

data.optimization

defaultCommentClassName

Explanation

Description: Defines optimization
to be applied on response data.
So far, the following values are
supported (for setting more than
one value, separate values by '['):
MINIFICATION and
COMPRESSION. MINIFICATION
minifies HTML data by e.g.
stripping whitespaces and
comments. COMPRESSION
applies gzip compression to
HTTP response. (Note: If you are
running in cluster mode and want
to test different configurations in
parallel, you can set different
values for each cluster node by
specifying property
data.optimization.nodeld to
override default property.)

Type: String

Restart required: COMPRESSIO
N can be switched on/off without
restart, MINIFICATION requires
restart

System: Yes

Optional: Yes

Example value: MINIFICATION|C
OMPRESSION

Description: Default text class
name for comments

Type: String

Restart required: No

System: No

Optional: Yes

Example value:

Since: 6.3.0

292

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmweb-server-adapter

cmas-core-server

cmweb-server-adapter

cmas-core-server

cmas-core-index-common

Property

defaultContentEntryClassName

defaultincommingMailClassName

defaultNumberOfCustomFieldsC

olumns

defaultOutgoingMailClassName

disable.admin.task.auto.commit

Explanation

Description: Default text class for
new acims

Type: String

Restart required: No

System: Yes

Optional: No

Example value: default_class
Since: 6.3.0

Description: Default text class
name for incoming mails
Type: String

Restart required: No

System: No

Optional: Yes

Example value:

Since: 6.3.0

Description: Default number of
columns for custom fields
Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 3

Since: 6.2.0

Description: Default text class
name for outgoing mails
Type: String

Restart required: No

System: No

Optional: Yes

Example value:

Since: 6.3.0

Description: All tasks created for
index update will be automatically
executed right after creation.
Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: false

Since: 6.6.1

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

293

Module

cmas-dwh-server

cmas-esb-core

cmas-core-cache

cmas-core-cache

cmas-core-cache

Property

dwh.mode

esb.directory

eviction.event.queue.size

eviction.max.nodes

eviction.wakeup.interval

Explanation

Description: Current mode of
DWH data transfer. Possible
values are OFF, ADMIN, LIVE
Type: String

Restart required: No

System: Yes

Optional: No

Example value: OFF

Since: 6.0.1

Description: Directory used by
ESB (Mule)

Type: String

Restart required: No

System: Yes

Optional: No

Example value: C:\Users\user\cm

as\mule
Since: 6.0

Description:

Type: Integer

Restart required: Yes
System: Yes

Optional: No

Example value: 200000
Since: 6.4.0

Description:

Type: Integer

Restart required: Yes
System: Yes

Optional: No

Example value: 100000
Since: 6.4.0

Description:

Type: Integer
Restart required: Yes
System: Yes
Optional: No
Example value: 3000
Since: 6.4.0

294 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmweb-server-adapter favoritesSizeLimit Description: Maximum number of
items in favorites list
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 10
Since: 6.0

cmas-workflow-jbpm fetchLock.interval Description:
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 5000
Removed in: 6.8.0

cmas-workflow-jbpm fetchLock.timeout Description:
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 15000
Removed in: 6.8.0

cmas-core-server fetchSize.strategy Description: Strategy selected to
set fetch size on jdbc result sets.
Type: String
Restart required: No
System: Yes
Optional: Yes
Example value: FetchSizePageB
asedStrategy,
FetchSizeThresholdStrategy,
FetchSizeFixedStrategy
Since: 6.8.4.1

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

295

Module

cmas-core-server

cmas-core-server

cmas-core-server

cmweb-server-adapter

Property

fetchSize.strategy.FetchSizeFixe
dStrategy.value

fetchSize.strategy.FetchSizePag
eBasedStrategy.limit

fetchSize.strategy.FetchSizeThre
sholdStrategy.value

globalSearchResultSizeLimit

Explanation

Description: Sets fetch size value
if selected strategy to set fetch
size is FetchSizeFixedStrategy.
Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 150

Since: 6.8.4.1

Description: Sets max fetch size
value if selected strategy to set
fetch size is FetchSizePageBase
dStrategy.

Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 10000

Since: 6.8.4.1

Description: Sets fetch size
threshold border values if
selected strategy to set fetch size
is FetchSizeThresholdStrategy.
Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 150,300,600,100
0

Since: 6.8.4.1

Description: Maximum number of
items in global (Q&E) search
result

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 10

Since: 6.0

296 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmweb-server-adapter helpFilePath Description: URL for online help.
If not empty, Help button is
displayed in Web Client.
Type: String
Restart required: No
System: Yes
Optional: Yes
Example value: http://www.conso
l.de
Since: 6.2.1

cmas-setup-hibernate hibernate.dialect Description: The dialect used by
hibernate. Usually set during
initial setup (depending on the
database system).
Type: String
Restart required: No
System: Yes
Optional: No
Example value: org.hibernate.dial
ect.MySQL5InnoDBDialect
Since: 6.0

cmweb-server-adapter hideTicketSubject Description: If set to true, ticket
subject is hidden.
Type: Boolean
Restart required: No
System: Yes
Optional: No
Example value: false
Since: 6.2.1

cmas-dwh-server ignore-queues Description: By adding a comma
separated list of queue names it
is configured that tickets of these
gueues are not transferred to the
DWH.
Type: String
Restart required: No
System: Yes
Optional: Yes
Example value: QueueNamel,Q
ueueName2,QueueName3
Since: 6.6.19
Removed in: 6.8.1

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

297

Module Property
cmas-core-index-common index.attachment
cmas-core-index-common index.history
cmas-core-index-common index.status
cmas-core-index-common index.task.worker.threads

Explanation

Description: Describes if content
of attachments is indexed.

Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: true

Since: 6.4.3

Description: Describes if unit and
ticket history are indexed.

Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: false

Since: 6.1.0

Description: Status of the
indexer, possible values RED,
YELLOW, GREEN, will be
displayed in the Admin-Tool.
Type: String

Restart required: No

System: Yes

Optional: No

Example value: GREEN
Since: 6.6.1

Description: How many threads
will be used to execute batch
index tasks (synchronization,
administrative, and repair tasks).
Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 1 (default) (we
recommend to use a value not
larger than 2)

Since: 6.6.14, 6.7.3

298

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-core-index-common

cmas-core-index-common

cmas-core-index-common

cmas-core-index-common

Property

index.version.current

index.version.newest

indexed.assets.per.thread.in.me
mory

indexed.engineers.per.thread.in.

memory

Explanation

Description: Holds information
about current (possibly old) index
version.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 1 (default)

Since: 6.7.0

Description: Holds information
about which index version is
considered newest.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 1 (default)
Since: 6.7.0

Description: How many assets
should be loaded into memory at
once during indexing per one
thread.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 200 (default)
Since: 6.8.0

Description: How many
engineers should be loaded into
memory at once during indexing
per one thread.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 300 (default)
Since: 6.6.14, 6.7.3

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

299

Module

cmas-core-index-common

cmas-core-index-common

Property

indexed.tickets.per.thread.in.me
mory

indexed.units.per.thread.in.memo
ry

Explanation

Description: How many tickets
should be loaded into memory at
once during indexing per one
thread.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 100 (default)
Since: 6.6.14, 6.7.3

Description: How many units
should be loaded into memory at
once during indexing per one
thread.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 200 (default)
Since: 6.6.14, 6.7.3

300 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-setup-manager initialized Description: Flag if CMAS is
initialized. If this value is missing
or not true, setup will be
performed.
Type: Boolean
Restart required: No
System: Yes
Optional: No
Example value: true
Since: 6.0

= Be careful with using
this property!!! When
you set the value to fals
e, the ConSol*CM
server will perform the
system set-up at the
next start, i.e. all data of
the existing system is
lost, including system
properties!!!

cmas-dwh-server is.cmrf.alive Description: As a starting point
time of sending last message to
CMREF should be used. If
response from CMRF is not
received after value (in seconds)
it should create a DWH operation
status with error message that
CMRF is down.
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 1200
Since: 6.7.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 301

Module Property Explanation

cmas-dwh-server java.naming.factory.initial Description: Factory class for
DWH context factory.
Type: String
Restart required: No
System: Yes
Optional: No
Example value: org.jnp.interfaces
.NamingContextFactory
Since: 6.0.1

cmas-dwh-server java.naming.factory.url.pkgs Description:
Type: String
Restart required: No
System: Yes
Optional: No
Example value: org.jboss.naming
:org.jnp.interfaces
Since: 6.0.1

cmas-dwh-server java.naming.provider.url Description: URL of naming
provider
Type: String
Restart required: No
System: Yes
Optional: No
Example value: localhost
Since: 6.0.1

cmas-workflow-engine jobExecutor.adminMail Description: Mail which will get
notified about job execution
problems (when retry counter is
exceeded).
Type: String
Restart required: No
System: Yes
Optional: Yes
Example value: admin@consol.d
e
Since: 6.8.0

302 ConSol*CM Process Designer Manual (CM up to version 6.9.3)
Module Property Explanation
cmas-workflow-jbpm jobExecutor.idlelnterval Description:

cmas-workflow-engine

cmas-workflow-jbpm

cmas-workflow-engine

jobExecutor.idleInterval.seconds

jobExecutor.jobExecuteRetryNu
mber

jobExecutor.jobMaxRetries

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 45000
Removed in: 6.8.0

Replaced by: jobExecutor.idlelnt
erval.seconds

Description: Determines how
often job executor thread will look
for new jobs to execute.

Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 5 (default)

Since: 6.8.0

Description:

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 5

Removed in: 6.8.0

Replaced by: jobExecutor.jobMa
xRetries

Description:

Type: Integer

Restart required: No
System: Yes

Optional: Yes

Example value: 5 (default)
Since: 6.8.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

303

Module

cmas-workflow-engine

cmas-workflow-engine

cmas-workflow-engine

cmas-workflow-engine

Property

jobExecutor.jobMaxRetriesReach
edSubject

jobExecutor.lockingLimit

jobExecutor.lockTimeout.second
s

jobExecutor.mailFrom

Explanation

Description: (rev.54593)

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: Job max retries
reached. Job was removed!!!
(default)

Since: 6.8.0

Description: Number of job
locked at once (marked for
execution) by job executor thread
Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 10 (default)
Since: 6.8.0

Description: How long the job can
be locked (marked for execution)
by job executor.

Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 360 (default)
Since: 6.8.0

Description: Mail which will be set
as From header during admin
notifications.

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: jobexecutor@co
nsol.de

Since: 6.8.0

304

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-workflow-engine

cmas-workflow-engine

cmas-workflow-jbpm

cmas-workflow-engine

Property

jobExecutor.maxInactivitylnterval
.minutes

jobExecutor.threads

jobExecutor.timerRetryInterval

jobExecutor.timerRetryInterval.se
conds

Explanation

Description: Number of minutes
of allowed job executor inactivity
(e.g. when it is blocked by long
timer execution). After this time
executors threads are restarted.
Type: Integer

Restart required: No

System: Yes

Optional: Yes. Default value is
set to 30 minutes.

Example value: 15 (default)
Since: 6.9.2.0

Description: Number of job
execution threads

Type: Integer

Restart required: No
System: Yes

Optional: Yes

Example value: 1 (default)
Since: 6.8.0

Description:

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 10000

Removed in: 6.8.0

Replaced by: jobExecutor.timerR
etrylnterval.seconds

Description: Determines how
long job executor thread will wait
after job execution error.

Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 10 (default)
Since: 6.8.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

305

Module Property

cmas-workflow-engine jobExecutor.txTimeout.seconds

cmas-core-security kerberos.v5.enabled

cmas-core-security kerberos.v5.username.regex

cmas-core-server last.config.change

Explanation

Description: Transaction timeout
used for job execution

Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 60 (default)
Since: 6.8.0

Description: Flag which indicates
whether SSO via Kerberos is
enabled.

Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: false (default if
Kerberos has not been enabled
during system set-up)

Since: 6.2.0

Description: Regular expression
used for mapping Kerberos
principal to CM user login.
Type: String

Restart required: No

System: Yes

Optional: No

Example value: (*)@.*

Since: 6.2.0

Description: Random UUID
created during last change in
config

Type: String

Restart required: No

System: Yes

Optional: No

Example value: 2573c7b7-2bf5-4
7ff-b5a2-bad31951a266

Since: 6.1.0,6.2.1

306 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-security Idap.authentication Description: Authentication
method used when using LDAP
authentication.
Type: String
Restart required: Yes
System: Yes
Optional: No
Example value: simple
Since: 6.0

cmas-core-security Idap.basedn Description: Base DN used for
looking up LDAP user accounts
when using LDAP authentication.
Type: String
Restart required: No
System: Yes
Optional: No
Example value: OU=accounts,D
C=consol,DC=de
Since: 6.0

cmas-core-server Idap.certificate.basedn Description: Base DN for
certificates location in LDAP tree.
If not provided, Idap.basedn is
taken.
Type: String
Restart required: No
System: Yes
Optional: Yes
Example value: OU=accounts,D
C=consol,DC=de
Since: 6.8.4

cmas-core-server Idap.certificate.content.attribute Description: LDAP attribute name
used where certificate data is
stored in LDAP tree. Default
value is: usercertificate.
Type: String
Restart required: No
System: Yes
Optional: Yes
Example value: usercertificate
Since: 6.8.4

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

307

Module Property
cmas-core-server Idap.certificate.password
cmas-core-server Idap.certificate.providerurl
cmas-core-server Idap.certificate.searchattr
cmas-core-server Idap.certificate.userdn

Explanation

Description: LDAP Certificates
manager password. If not set,
Idap.password is taken.

Type: String

Restart required: No

System: Yes

Optional: Yes

Since: 6.8.4

Description: LDAP Certificates
provider URL. If not set,
Idap.providerurl is taken.

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: |dap://ldap.conso
l.de:389

Since: 6.8.4

Description: LDAP attribute name
used to search for certificate in
LDAP tree. Default value is: mail.
Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: malil

Since: 6.8.4

Description: LDAP Certificates
manager DN. If not set,
Idap.userdn is taken.

Type: String

Restart required: No

System: Yes

Optional: Yes

Since: 6.8.4

308

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-core-security

cmas-core-security

cmas-core-security

cmas-core-security

cmas-core-security

Property

Idap.contact.name.basedn

only version 6.9 and higher

Idap.contact.name.password

only version 6.9 and higher

Idap.contact.name.providerurl

only version 6.9 and higher

Idap.contact.name.searchattr

only version 6.9 and higher

Idap.contact.name.userdn

only version 6.9 and higher

Explanation

Description: Base path to search
for contact DN by LDAP ID (e.qg.
ou=accounts,dc=consol,dc=de)
Type: String

Restart required: No

System: No

Optional: Yes

Since: 6.9.3.0

Description: Password to lookup
contact DN by LDAP ID. If not
set, anonymous account is used.
Type: String

Restart required: No

System: No

Optional: Yes

Since: 6.9.3.0

Description: Address of the LDAP
server (Idap[s]://host:port)

Type: String

Restart required: No

System: No

Optional: Yes

Since: 6.9.3.0

Description: Attribute to search
for contact DN by LDAP ID (e.g.
uid)

Type: String

Restart required: No

System: No

Optional: Yes

Since: 6.9.3.0

Description: User DN to lookup
contact DN by LDAP ID. If not
set, anonymous account is used.
Type: String

Restart required: No

System: No

Optional: Yes

Since: 6.9.3.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 309

Module Property Explanation

cmas-core-security Idap.initialcontextfactory Description: Class name for initial
context factory of LDAP
implementation when using
LDAP authentication. If it is not
set,
com.sun.jndi.ldap.LdapCtxFactor
y is being used as value.
Type: String
Restart required: Yes
System: Yes
Optional: No
Example value: com.sun.jndi.lda
p.LdapCtxFactory
Since: 6.0

cmas-core-security Idap.password Description: Password for
connecting to LDAP to lookup
users (when using LDAP
authentication). Only needed if
lookup cannot be done
anonymously.
Type: Password
Restart required: No
System: Yes
Optional: Yes
Since: 6.1.2

cmas-core-security Idap.providerurl Description: LDAP provider
(when using LDAP
authentication).
Type: String
Restart required: No
System: Yes
Optional: No
Example value: |dap://ldap.conso
l.de:389
Since: 6.0

310

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-core-security

cmas-core-security

cmas-esb-mail

Property

Idap.searchattr

Idap.userdn

mail.attachments.validation.info.s
ender

Explanation

Description: Search attribute for
looking up LDAP entry connected
to CM6 login.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: uid

Since: 6.0

Description: LDAP user for
connecting to LDAP to lookup
users (when using LDAP
authentication). Only needed if
lookup cannot be done
anonymously.

Type: String

Restart required: No

System: Yes

Optional: Yes

Since: 6.1.2

Description: Sets From header of
attachments type error
notification mail. As a default the
e-mail address of the
administrator which you have
entered during system set-up is
used.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: admin@consolc
m.com

Since: 6.7.5

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

311

Module

cmas-esb-mail

cmas-esbh-mail

cmas-esb-mail

cmas-esbh-mail

Property

mail.attachments.validation.info.s
ubject

mail.callname.pattern

mail.cluster.node.id

mail.db.archive

Explanation

Description: Sets subject of
attachments type error
notification mail.

Type: String

Restart required: No
System: Yes

Optional: No

Example value: Mail was not
processed because its
attachments were rejected!!!
Since: 6.7.5

Description: Regular expression
for subject of incoming mails.
Available as
TICKET_NAME_PATTERN_FO
RMAT in incoming mail scripts.
Type: String

Restart required: No

System: Yes

Optional: No

Example value: *?Ticket\s+\((\S+
N).*

Since: 6.0

Description: Only the node
whose mail.cluster.node.id
equals cmas.clusternode.id will
start the Mule ESB mail services.
Type: String

Restart required: No

System: Yes

Optional: No

Example value: unspecified
Since: 6.6.5

Description: If property is set to tr
ue, incoming e-mails are
archived in the database.

Type: Boolean

Restart required: No

System: Yes

Optional: Yes

Example value: false (default)
Since: 6.8.5.5

312 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-esb-mail mail.delete.read Description: Determines whether
CM deletes messages fetched
via IMAP(S). Setting value to true
will cause deletion of messages
after fetching. Default is to not
delete messages fetched via
IMAP(S). Note: Messages
fetched via POP3(S) will always
be deleted.
Type: Boolean
Restart required: No
System: Yes
Optional: No
Example value: true
Since: 6.7.3

cmas-esb-mail mail.encryption Description: If property is set to tr
ue, the encrypt check box in the
Ticket E-Mail Editor is checked
by default.
Type: Boolean
Restart required: No
System: Yes
Optional: No
Example value: true (default =
false)
Since: 6.8.4.0

cmweb-server-adapter mail.from Description: Use this address if
set instead of engineer e-mail
address during mail
conversation.
Type: String
Restart required: No
System: Yes
Optional: Yes
Since: 6.1.2

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 313

Module Property Explanation

cmas-esb-mail mail.incoming.uri Description: URL for incoming
mails
Type: String
Restart required: No
System: Yes
Optional: No
Example value: pop3://lcm-incomi
ng-user:password@localhost:101
10
Since: 6.0

= This value should not
be edited here using the
system properties
pop-up window, but the
mailboxes should be
configured using the file
card E-mail in the
Admin-Tool (see ConSo
[*CM Administrator
Manual section File
Card E-mail). Using
this standard feature all
entries are controlled -
i.e. for each mailbox
which is added, CM
establishes a test
connection during
mailbox set-up. That
way it is not possible to
enter wrong values.

cmas-esb-mail mail.max.restarts Description: Maximum number of
mail service restarts before giving
up
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 3
Since: 6.0

314

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-esb-mail

cmas-esbh-mail

cmas-core-server

cmas-core-server

Property

mail.mime.strict

mail.mule.service

mail.notification.engineerChange

mail.notification.sender

Explanation

Description: If set to false, malil
addresses are not parsed for
strict MIME compliance. Default
is true, which means check for
strict MIME compliance.

Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: false

Since: 6.6.17, 6.7.3

Description: From address for
mails sent by Mule service
Type: EMail

Restart required: No

System: Yes

Optional: No

Example value: maz@consol.de
Since: 6.0

Description: Flag if notification
mail should be sent when
engineer of ticket is changed.
Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: true

Since: 6.1.0

Description: From address for
notification mails when engineer
of ticket is changed. If not set, cm
as-core-security admin.email is
used instead.

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: cménotification@
cmé6installation

Since: 6.6.3

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

315

Module

cmas-esb-mail

cmas-esb-mail

cmas-esb-mail

cmas-esb-mail

Property

mail.polling.interval

mail.process.error

mail.process.retry.attempts

mail.process.timeout

Explanation

Description: Mail polling interval
in ms

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 60000

Since: 6.0

Description: To address for error
mails from Mule. As a default the
e-mail address of the
administrator which you have
entered during system set-up is
used.

Type: EMail

Restart required: No

System: Yes

Optional: No

Example value: maz@-consol.de
Since: 6.0

Description: Number of retries
when processing malil

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 3

Since: 6.0.2

Description: Mail processing
timeout in seconds

Type: Integer

Restart required: No
System: Yes

Optional: No

Example value: 60

Since: 6.1.3

316

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-esb-mail

cmweb-server-adapter

Property

mail.redelivery.retry.count

mail.reply.to

Explanation

Description: Indicates the number
of retries of re-delivering an
e-mail from the CM system.
Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 3

Since: 6.1.0

Description: When set, Web
Client will display reply-to field on
mail send, prefilled with this
value.

Type: String

Restart required: No

System: Yes

Optional: Yes

Since: 6.0.1

& Please see also ConSol
*CM Administrator
Manual section Queue
Administration .

When you set the
REPLY TO address in
the outgoing e-mail
script, the mail.reply.to
system property must
not be set (because it
would overwrite the
configured value)! That
means when you use
one outgoing e-mail
script for a queue you
have to define outgoing
e-mail scripts for all
queues because the ma
il.reply.to property can
no longer be used.

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

317

Module

cmas-workflow-jbpm

cmas-core-server

cmas-core-server

cmweb-server-adapter

Property

mail.sender.address

mail.smtp.email

mail.smtp.envelopesender

mailTemplateAboveQuotedText

Explanation

Description: From address for
mails from the workflow engine
Type: String

Restart required: No

System: Yes

Optional: No

Example value: maz@consol.de
Removed in: 6.8.0

Replaced by: jobExecutor.mailFr
om

Description: SMTP mail URL for
outgoing mails

Type: String

Restart required: No

System: Yes

Optional: No

Example value: smtp://mail.cons
ol.de:25

Since: 6.0

Description: Mail address used
as sender in SMTP envelope. If
not set, the From: address of the
mail is used.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: mysender@myd
omain.com

Since: 6.5.7

Description: Indicates behavior of
mail template in the Ticket E-Mail
Editor when another mail is
guoted, i.e. forwarded or replied
to.

Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: false

Since: 6.2.4

318

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-core-server

cmweb-server-adapter

cmas-core-server

cmas-core-server

Property

max.licences.perUser

maxSizePerPagemaplnMegaByt
es

monitoring.engineer.login

only version 6.9 and higher

monitoring.unit.login

only version 6.9 and higher

Explanation

Description: Sets max licenses
single user can use (e.g logging
in from different browsers). By
default this value is not restricted.
Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 10

Since: 6.8.4.5

Description: Maximum size (in
MB) for each Wicket pagemap
Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 15

Since: 6.3.5

Description: Login of monitoring
engineer

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: bartek

Since: 6.9.3.0

Description: Login of monitoring
unit

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: bartek

Since: 6.9.3.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

319

Module

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

Property

notification.error.description

notification.error.from

notification.error.subject

notification.error.to

notification.finished_successfully.

description

Explanation

Description: Text for error mails
from DWH

Type: String

Restart required: No

System: Yes

Optional: No

Example value: Error occurred
Since: 6.0.1

Description: From address for
error mails from DWH

Type: String

Restart required: No

System: Yes

Optional: Yes

Since: 6.0.1

Description: Subject for error
mails from DWH

Type: String

Restart required: No

System: Yes

Optional: No

Example value: Error occurred
Since: 6.0.1

Description: To address for error
mails from DWH

Type: String

Restart required: No

System: Yes

Optional: No

Example value: maz@consol.de
Since: 6.0.1

Description: Text for mails from
DWH when transfer finished
successfully.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: Transfer finished
successfully

Since: 6.0.1

320

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

Property

notification.finished_successfully.
from

notification.finished_successfully.
subject

notification.finished_successfully.
to

notification.finished_unsuccessful
ly.description

Explanation

Description: From address for
mails from DWH when transfer
finished successfully.

Type: String

Restart required: No

System: Yes

Optional: Yes

Since: 6.0.1

Description: Subject for mails
from DWH when transfer finished
successfully.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: Transfer finished
successfully

Since: 6.0.1

Description: To address for mails
from DWH when transfer finished
successfully.

Restart required: Yes

System: Yes

Optional: No

Example value: maz@consol.de

Since: 6.0.1

Description: Text for mails from
DWH when transfer finished
unsuccessfully.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: Transfer finished
unsuccessfully

Since: 6.0.1

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

321

Module

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

cmas-dwh-server

Property

notification.finished_unsuccessful
ly.from

notification.finished_unsuccessful
ly.subject

notification.finished_unsuccessful
ly.to

notification.host

Explanation

Description: From address for
mails from DWH when transfer
finished unsuccessfully.

Type: String

Restart required: No

System: Yes

Optional: Yes

Since: 6.0.1

Description: Subject for mails
from DWH when transfer finished
unsuccessfully.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: Transfer finished
unsuccessfully

Since: 6.0.1

Description: To address for mails
from DWH when transfer finished
unsuccessfully.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: maz@-consol.de

Since: 6.0.1

Description: Mail (SMTP) server
hostname for sending DWH mails
Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: mail.consol.de
Since: 6.1.0

322 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-dwh-server notification.password Description: Password for
sending DWH mails (optional)
Type: String
Restart required: No
System: Yes
Optional: Yes
Since: 6.1.0

cmas-dwh-server notification.port Description: SMTP port for
sending DWH mails
Type: String
Restart required: No
System: Yes
Optional: Yes
Example value: 25
Since: 6.1.0

cmas-dwh-server notification.protocol Description: The protocol used
for sending emails from DWH.
Type: String
Restart required: No
System: Yes
Optional: Yes
Example value: pop3\

cmas-dwh-server notification.username Description: (SMTP) User name
for sending DWH mails
Type: String
Restart required: No
System: Yes
Optional: Yes
Example value: maz
Since: 6.1.0

cmas-workflow-jbpm outdated.lock.age Description:
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 60000
Removed in: 6.8.0
Replaced by: jobExecutor.lockTi
meout.seconds

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

323

Module

cmweb-server-adapter

cmweb-server-adapter

cmweb-server-adapter

Property

pagemapLockDurationinSeconds

postActivityExecutionScriptName

queuesExcludedFromGS

Explanation

Description: Number of seconds
to pass before pagemap is
considered to be locked for too
long.

Type: Integer

Restart required: Yes

System: Yes

Optional: Yes

Example value: 60

Since: 6.7.3

Description: Defines the name for
the script which should be
executed after every workflow
activity (see ConSol*CM
Administrator Manual section Ad
min-Tool Scripts - Default
Workflow Activity Script). If no
script should be executed, leave
the value empty.

Type: String

Restart required: No

System: Yes

Optional: No

Example value: postActivityExec
utionHandler

Since: 6.2.0

Description: Comma-separated
list of queue names which are
excluded from global search.
Type: String

Restart required: No

System: Yes

Optional: Yes

Since: 6.0

324

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-workflow-jbpm

cmweb-server-adapter

cmweb-server-adapter

Property

refreshTimelnCaseOfConcurrent
RememberMeRequests

rememberMeLifetimelnMinutes

request.scope.transaction

Explanation

Description: It sets the refresh
time (in seconds) after which
page will be reloaded in case of
concurrent remember me request
s. This feature prevents one user
from occupying many licenses.
Please increase that time if
sessions are still occupying.
Type: Integer

Restart required: Yes

System: Yes

Optional: Yes

Example value: 5

Since: 6.8.2

Description: Lifetime for rememb
er me in minutes

Type: Integer

Restart required: Yes

System: Yes

Optional: No

Example value: 1440

Since: 6.0

Description: 1t allows to disable
request scope transaction. By
default one transaction is used
per request. Setting this property
to false there will cause one
transaction per service method
invocation.

Type: Boolean

Restart required: Yes

System: Yes

Optional: Yes

Example value: true

Since: 6.8.1

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

325

Module

cmas-setup-scene

cmweb-server-adapter

cmweb-server-adapter

cmweb-server-adapter

Property

scene

searchPageSize

searchPageSizeOptions

serverPoolinginterval

Explanation

Description: Scene file which was
imported during setup (can be
empty).

Type: String

Restart required: No

System: Yes

Optional: No

Example value: vfszip:/P:/dist/tar
get/jboss/server/cmas/deploy/cm
-dist-6.5.1-SNAPSHOQOT .ear/APP-
INF/lib/dist-scene-6.5.1-SNAPSH
OT.jarfMETA-INF/cmas/scenes/h
elpdesk-sales_scene.jar/

Since: 6.0

Description: Default page size for
search results

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 20

Since: 6.0

Description: Options for page
size for search results

Type: String

Restart required: No

System: Yes

Optional: No

Example value: 10|20|30|40]50|7
5100

Since: 6.0

Description:

Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 5
Since: 6.1.0

326

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-core-server

cmas-core-server

cmas-core-server

Property

server.session.archive.reaper.int
erval

server.session.archive.timeout

server.session.reaper.interval

Explanation

Description: Server archived
sessions' reaper interval (in
seconds)

Type: Integer

Restart required: No
System: Yes

Optional: Yes

Example value: 60

Since: 6.7.1

Description: Server sessions
archive validity timeout (in days).
After this time session info is
removed from DB.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 31

Since: 6.7.1

Description: Server inactive
(ended) sessions' reaper interval
(in seconds)

Type: Integer

Restart required: Only Session
Service

System: Yes

Optional: No

Example value: 60

Since: 6.6.1, 6.7.1

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 327

Module Property Explanation

cmas-core-server server.session.timeout Description: Server session
timeout (in seconds) for
connected clients. Each client
can overwrite this timeout with
custom value using its ID
(ADMIN_TOOL, WEB_CLIENT,
WORKFLOW_EDITOR, TRACK
(before 6.8 please use
PORTER), ETL, REST)
appended to property name, e.g.
server.session.timeout. ADMIN_T
OOoL
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 1800
Since: 6.6.1, 6.7.1

cmas-dwh-server skip-ticket Description: Tickets are not
transferred during
transfer/update.
Type: Boolean
Restart required: No
System: Yes
Optional: No
Example value: false
Since: 6.6.19
Removed in: 6.8.1

cmas-dwh-server skip-ticket-history Description: History of ticket is
not transferred during
transfer/update.
Type: Boolean
Restart required: No
System: Yes
Optional: No
Example value: false
Since: 6.6.19
Removed in: 6.8.1

328 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-dwh-server skip-unit Description: Units are not
transferred during
transfer/update.

Type: Boolean
Restart required: No
System: Yes
Optional: No
Example value: false
Since: 6.6.19
Removed in: 6.8.1

cmas-dwh-server skip-unit-history Description: History of unit is not
transferred during
transfer/update.
Type: Boolean
Restart required: No
System: Yes
Optional: No
Example value: false
Since: 6.6.19
Removed in: 6.8.1

cmas-dwh-server split.history Description: Changes the SQL
that fetches the history for the
tickets during DWH transfer not
to all tickets at once but only for
one ticket per SQL.
Type: Boolean
Restart required: No
System: Yes
Optional: Yes
Example value: false
Since: 6.8.0

cmweb-server-adapter supportEmail Description:
Type: String
Restart required: No
System: Yes
Optional: Yes
Since: 6.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

329

Module

cmas-core-index-common

cmas-core-index-common

cmas-core-index-common

Property

synchronize.master.address

synchronize.master.security.toke
n

synchronize.master.security.user

Explanation

Description: Value of -Dcmas. http
.host.port informing how to
connect to indexing master
server. Default null. Since 6.6.17
this value is configurable in setup
to designate initial indexing
master server. Please note that
changing this value is only
allowed when all cluster nodes
index changes receivers are
stopped.

Type: Integer

Restart required: No

System: Yes

Optional: Yes

Example value: 127.0.0.1:80
Since: 6.6.0

Description: The password for
accessing the index snapshot via
URL, e.g. for index
synchronizaton or for back-ups.
Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: token

Since: 6.6.0

Description: The user name for
accessing the index snapshot via
URL, e.g. for index
synchronizaton or for back-ups.
Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: user

Since: 6.6.0

330 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation
cmas-core-index-common synchronize.master.timeout.minu Description: How much time
tes master server may constantly fail

until new master gets elected
with index fix procedure. Default
5. Since 6.6.17 this value is
configurable in setup where zero
means that master server will
never change (failover
mechanism is off).

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 5

Since: 6.6.0

cmas-core-index-common synchronize.megabits.per.second Description: How much
bandwidth can master server
consume to transfer index
changes to all slave servers.
Default 85. Please do not use all
available bandwidth to transfer
index changes between hosts.
This will most probably partition
cluster as some subsystems will
not be able to communicate.
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 85
Since: 6.6.0

cmas-core-index-common synchronize.sleep.millis Description: How often each
slave server polls master server
for index changes. Default 1000.
Type: Integer
Restart required: No
System: Yes
Optional: No
Example value: 1000
Since: 6.6.0

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

331

Module

cmweb-server-adapter

cmas-core-server

cmweb-server-adapter

cmweb-server-adapter

Property

themeOverlay

ticket.delete.timeout

ticketListRefreshintervallnSecon

ds

ticketListSizeLimit

Explanation

Description: Name of used theme
overlay

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: kyoEUR

Since: 6.0

Description: Transaction timeout
(in seconds) for deleting tickets
Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 60

Since: 6.1.3

Description: Refresh interval for
ticket list (in seconds)

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 180

Since: 6.0

Description: Maximum number of
tickets in ticket list

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 100

Since: 6.0

332

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-core-server

cmweb-server-adapter

cmas-core-server

cmas-core-server

Property

tickets.delete.size

unitindexSearchResultSizeLimit

unit.replace.batchSize

unit.replace.timeout

Explanation

Description: Property that defines
a number of tickets deleted per
transaction. By default it is set to
10.

Type: Integer

Restart required: Only Session
Service

System: Yes

Optional: No

Example value: 10

Since: 6.8.1

Description: Maximum number of
units in unit search result (e.g.
when searching for contact)
Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 5

Since: 6.0

Description: Describes number of
objects to be processed in unit
replace action.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 5

Since: 6.8.2

Description: Transaction timeout
(seconds) of unit replacement
action step.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 120

Since: 6.8.2

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

333

Module

cmas-dwh-server

cmas-core-server

cmas-core-server

Property

unit.transfer.order

unused.content.remover.cluster.n
ode.id

only version 6.9 and higher

unused.content.remover.enabled

only version 6.9 and higher

Explanation

Description: Define in which
order unit custom field groups
should be transferred to the
DWH.

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: company;custom
er

Since: 6.6.19

Removed in: 6.8.1

Description: Value of a
cmas.clusternode.id designating
node which will remove unused
ticket attachments and unit
content entries.

Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: 1 (assuming
cluster node started with
-Dcmas.clusternode.id=1
parameter)

Since: 6.9.0.0

Description: Flag whether unused
ticket attachments and unit
content entries removal should
take place.

Type: Boolean

Restart required: No

System: Yes

Optional: No

Example value: true

Since: 6.9.0.0

334

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module

cmas-core-server

cmas-core-server

cmweb-server-adapter

cmweb-server-adapter

Property

unused.content.remover.polling.
minutes

only version 6.9 and higher

unused.content.remover.ttl. minut
es

only version 6.9 and higher

urlLogoutPath

webSessionTimeoutinMinutes

Explanation

Description: How often unused
ticket attachments and unit
content entries should be
checked for removal.

Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 15

Since: 6.9.0.0

Description: Minimum interval
after which unused ticket
attachments and unit content
entries can be removed.
Type: Integer

Restart required: No

System: Yes

Optional: No

Example value: 1440

Since: 6.9.0.0

Description: URL which is used
when user logs out. (If no value is
set, logout leads to login-mask.)
Type: String

Restart required: No

System: Yes

Optional: Yes

Example value: http://intranet.con
sol.de

Since: 6.3.1

Description: Session timeout in
minutes

Type: Integer

Restart required: Yes

System: Yes

Optional: No

Example value: 180

Removed in: 6.7.1

Replaced by: server.session.time
out

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

335

Module

cmweb-server-adapter

Property

wicketAjaxRequestHeaderFilterE
nabled

Explanation

Description: This enables filter for
Wicket AJAX requests, coming
from stale pages with Wicket 1.4
scripting (CM6 pre-6.8.0), after
update to CM6 post-6.8.0.

Type: Boolean

Restart required: Yes

System: Yes

Optional: Yes

Example value: false

Since: 6.8.1

336 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

12 Appendix D - Trademarks

® Microsoft® — Microsoft and Windows are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. See Microsoft trademark web page

* Microsoft® Office — Microsoft and Microsoft Office are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. See Microsoft trademark web page

® Windows® operating system — Microsoft and Windows are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries. See Microsoft trademark web

page

* Microsoft® Active Directory® — Microsoft and Microsoft Active Directory are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. See
Microsoft trademark web page

* Microsoft® Word® — Microsoft and Microsoft Word are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. See Microsoft trademark web page

* Microsoft® SQL Server® — Microsoft and Microsoft SQL Server are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. See Microsoft
trademark web page

* MuleSoft™ and Mule ESB™ are among the trademarks of MuleSoft, Inc. See Mule Soft web page

® Oracle® — Oracle is a registered trademark of Oracle Corporation and/or its affiliates. See Oracle
trademarks web page

® Oracle® WebLogic — Oracle is a registered trademark of Oracle Corporation and/or its affiliates. See
Oracle trademarks web page

®* Pentaho® — Pentaho and the Pentaho logo are registered trademarks of Pentaho Inc. See Pentaho
trademark web page

http://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/en-us.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/en-us.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/en-us.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/en-us.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/en-us.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/en-us.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/en-us.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/en-us.aspx
http://www.mulesoft.com/
http://docs.oracle.com/cd/E28582_01/doc/dcommon/html/cpyr.htm
http://docs.oracle.com/cd/E28582_01/doc/dcommon/html/cpyr.htm
http://docs.oracle.com/cd/E28582_01/doc/dcommon/html/cpyr.htm
http://www.pentaho.com/trademarks
http://www.pentaho.com/trademarks

ConSol*CM Process Designer Manual (CM up to version 6.9.3)

13 Index

A

Access Rights (definition) 10
ACFs 71

Activity Control Forms 71
Additional Customer (definition) 19
Additional Engineer (definition) 20

C

Customer, additional (definition) 19
Customer, primary (definition) 19
Customer (definition) 10

Custom Fields (definition) 19

D

Descriptions in Properties Editor 40

E

Engineer, additional (short definition) 20
Engineer (definition) 19

H

History Visibilitiy in Properties Editor 42

L

Labels in Properties Editor 39

O

Overlays in Properties Editor 41

337

338 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

P

Preconditions in Properties Editor 41

Primary Customer (definition) 19

Process (definition) 10

Processdesignermanual 6 8 U 6 9 6, 18, 24, 27, 44, 46, 48, 51, 57, 67, 71, 72, 83, 91,

102, 110, 115, 122, 126, 130, 150, 157, 159, 162, 163, 170, 178, 184, 186, 200, 205, 230, 236, 336

Q

Queue (definition) 19

R

Responsibilities (definition) 10
Roles (definition) 10

S

Sort Index in Properties Editor 40
System Properties 236

T

Task (definition) 10
Ticket (definition) 19
Triggers 71

W

Workflow (definition) 19

	Introduction to the ConSol*CM Process Designer
	ConSol*CM for Business Process Management
	This Manual
	Before You Read this Book ...
	The Book's Structure
	Layout Explanations

	Business Processes
	Introduction to Workflows in ConSol*CM
	The ConSol*CM Process Designer at a Glance
	Modeling Workflows
	Tickets and Activities
	Drag & Drop Modeling of Workflow Components
	Scopes and Nesting of Scopes
	Modeling Escalation Mechanisms (Triggers and Wait States)
	Modeling Interrupts and Exceptions
	Scripting Capabilities
	Versioning of Workflows

	Basic Components of ConSol*CM Processes
	General Objects
	Data Fields
	Data Fields in ConSol*CM Versions 6.8 and Earlier
	Data Fields in ConSol*CM Versions 6.9 and Higher

	Standard Ticket Data Fields

	ConSol*CM Process Designer Manual - Work with the Process Designer Application
	Work with the Process Designer Application
	Steps to Perform for a New Process
	Start of the Process Designer

	Process Designer GUI
	Introduction to the Process Designer GUI Elements
	Overview: GUI Sections
	Main Menu
	Workflow Editing Panel
	Loading and Deleting Workflows
	Loading a Workflow
	Deleting a Workflow

	Palette for Elements and Adornments
	Elements
	Adornments

	The Properties Editor (Example: Activity)

	The Script Editor

	ConSol*CM Process Designer Manual - Components of ConSol*CM Workflows
	Components of ConSol*CM Workflows
	Introduction

	Workflow Components: START Node
	Properties of a Start Node

	Workflow Components: END Nodes
	Properties of an End Node

	Workflow Components: Scopes
	Introduction to Scopes
	Defining a New Scope
	Properties of a Scope
	Scopes and Views

	Workflow Components: Activities
	Introduction to Activities
	Properties of an Activity
	Process Logic of Activities
	Examples for Activities
	Example 1: Precondition for Displaying Activity "Inform team lead"
	Example 2: Send an E-Mail to the Main Contact When a Ticket Has Been Opened
	Example 3: Assign the Ticket to the Current Engineer

	Workflow Components: Decision Nodes
	Introduction to Decision Nodes
	Properties of a Decision Node
	Example for a Decision Node

	ConSol*CM Process Designer Manual - Adornments (Triggers and ACFs)
	Adornments (Triggers and ACFs)
	Time Triggers
	Introduction to Time Triggers
	Adding a Time Trigger to a Workflow
	Adding a Time Trigger to a Scope
	Adding a Time Trigger to an Activity

	Properties of a Time Trigger
	Business Logic and Initialization of a Time Trigger
	Examples for Time Triggers
	Scripting with Time Triggers
	Example 1: Set the Due Time of a Time Trigger Depending on the Queue
	Example 2: Calculate an Escalation as Warning 2 Days before Desired End Date

	Mail Triggers
	Introduction to Mail Triggers
	Mail Trigger at a Scope
	Mail Trigger at an Activity

	Adding a Mail Trigger to a Workflow
	Adding a Mail Trigger to a Scope
	Adding a Mail Trigger to an Activity

	Properties of a Mail Trigger
	Examples for Mail Triggers
	Use Case 1: Overlay for Ticket Icon
	Use Case 2: Overlay for Ticket Icon and E-Mail Confirmation by Engineer

	Process Logic with Mail Triggers

	Business Event Triggers
	Introduction to Business Event Triggers
	Adding a Business Event Trigger to a Workflow
	Adding a Business Event Trigger to a Scope

	Properties of a Business Event Trigger
	Business Logic of Business Event Triggers
	Firing Order of Serialized Business Event Triggers
	Firing Order of Business Event Triggers in Hierarchical Scopes
	Case 1
	Case 2
	Case 3

	Examples for Business Event Triggers
	Use Case 1: Check Engineer Comment
	Use Case 2: Re-Calculate the Ticket Priority if Impact and/or Urgency Have Been Changed
	Use Case 3: Continue Delivery Process When Shipment for the Order Has Arrived

	Best Practices: Using Business Event Triggers

	Activity Control Forms (ACFs)
	Introduction to ACFs
	Adding an ACF to a Workflow
	Variant A: Starting the ACF Definition Using the Admin-Tool
	Variant B: Starting the ACF Definition Using the Process Designer

	Properties of an ACF
	Business Logic of ACFs
	ACF at Manual Activity
	ACF at Manual Activity with Condition

	Examples for the Use of ACFs
	Use Case 1: ACF for the Dismissal of a Customer Request
	Use Case 2: Fill-in Sales Information when Bid is Created

	Jump-out and Jump-in Nodes
	Introduction
	Jump-out Nodes
	Properties of a Jump-out Node

	Jump-in Nodes
	Properties of a Jump-in Node

	Process Logic
	Activities
	Interrupts and Exceptions
	Interrupts
	Exceptions

	Loops (Errors in Workflows)
	Process Logic of Time Triggers
	Process Logic of Business Event Triggers

	ConSol*CM Process Designer Manual - Workflow Programming
	Workflow Programming
	Introduction
	Additional Tools for Workflow Programming
	Notes About Method Syntax
	Getter Methods Can Often Be Omitted
	Setter Methods Can Often Be Omitted

	Important Classes and Objects
	Introduction
	Important Objects
	Ticket
	workflowAPI

	Convenience Classes and Methods
	Example 1: Using ConfigurationService to Retrieve System Properties
	Example 2: Using EngineerService to Assign the Ticket to an Approver
	Example 3: Using EnumService to Retrieve an Enum Value by Name
	Example 4: Using TicketService to Retrieve all Tickets of a Certain View
	Example 5: Using EngineerRoleRelationService to Send an E-Mail to All Engineers of a Role

	Working With Data Fields
	Introduction to Data Fields
	ConSol*CM Version 6.8 and Older
	ConSol*CM Version 6.9 and Higher

	Data Types for Data Fields
	Custom Fields for Ticket Data
	Most Important Methods for Access to Ticket Custom Fields
	Retrieve Custom Field Values for Ticket Data
	Simple Data Types
	Enum Values
	Lists
	Lists of Simple Data Types
	Lists of Structs (Tables)

	Setting Custom Field Values for Ticket Data
	Setting Values for Custom Fields with Simple Data Types
	Setting Enum Values
	Setting List Values
	Setting Values in Lists of Simple Data Types
	Setting Values in Lists of Structs

	Fading-in and -out of Custom Field Groups

	Data Fields for Customer Data
	Custom Fields for Customer Data (CM Version 6.8 and Older)
	Retrieving Values
	Setting Values for Customer Data in CM Version 6.8 and Older

	Data Object Group Fields for Customer Data (CM Version 6.9 and Higher)
	Most Important Methods for Access to Customer Data Data Object Group Fields
	Retrieving Values for Customer Data in CM Version 6.9 and Higher
	Setting Values for Customer Data in CM Version 6.9 and Higher
	Setting Values for Data Object Group Fields with Simple Data Types
	Lists
	Setting Values in a List of Structs for Customer Data

	Convenience Methods for Access to Customer Data in CM Version 6.9 and Higher

	Using Data Fields for (Invisible) Variables

	Sending E-Mails
	Introduction to Sending E-Mails
	Important Methods
	ConSol*CM Version 6.8 and Older
	ConSol*CM Version 6.9 and Higher

	Examples
	Sending an Automatic Acknowledgment of Receipt to the Customer When He/She Has Opened a Ticket
	ConSol*CM Version 6.8 and Older
	ConSol*CM Version 6.9 and Higher

	Sending an E-Mail to the Engineer When a Certain Escalation Level Has Been Reached
	ConSol*CM Version 6.8 and Older
	ConSol*CM Version 6.9 and Higher
	Sending an E-Mail to a Customer Integrating the Queue-Specific Mail Script

	Sending an E-Mail to All Contacts of the Ticket
	Sending an E-Mail to Each Contact in a List of All Contacts of the Ticket

	Working with Path Information
	Introduction
	Retrieve Path Information for a Workflow Element
	Examples for the Use of Path Information
	Example 1: Deactivate and/or Re-Initialize a Time Trigger

	Working with Calendars and Times
	Introduction
	Calculating with Dates and Times without a CM Business Calendar
	Example: Setting a Time Trigger Time with Dynamic Time Range

	Calculating with Dates and Times Using a CM Business Calendar
	Example: Using a Time Trigger with a Business Calendar to Calculate Escalation Time (CM 6.9)

	ConSol*CM Process Designer Manual - Working with Object Relations
	Working with Object Relations
	Working with Ticket Relations
	Introduction
	Simple Ticket Relation without a Hierarchy
	Example: Creating a Simple Relation between Two Tickets

	Master-Slave Relations
	Example: Creating a Master-Slave Relation between Two Tickets
	Syntax: Finding All Slave Tickets

	Parent-Child Relations
	Example 1: Creating a New Child Ticket as Child of Current Ticket
	Example 2: Finding the Parent Ticket of a Ticket
	Example 3: Finding All Child Tickets of a Ticket
	Example 4: Finding All Brother Tickets (Other Child Tickets) of the Same Parent Ticket

	Important Methods for the Work with Ticket Relations

	Working with Customer Relations (Data Object Relations)
	Introduction
	Creating Unit Relations Using the Programming Interface
	Example: Add a Reseller - End Customer Relation

	Important Java Classes for the Work with Unit Relations

	Searching for Tickets and Customers Using the ConSol*CM Workflow API
	Introduction
	Searching for Tickets
	Example 1: General Example to Search for Tickets
	Example 2: Find All Tickets with the Same Service as the Current Ticket
	Example 3: Search for Tickets by Unit

	Searching for Units (Contacts and Companies)
	Example 1: Search for Contacts by First Name and Last Name
	General Syntax for Unit Search by Enum Value
	Example 2: Search for Units by Enum Value

	Debug Information
	Introduction
	Using Statements for Debug Output
	Debug Output to server.log File
	Debug Output as Text Entry in Ticket
	Debugging ConSol*CM Standard Scripts

	Best Practices
	The Basic Organization of a Workflow: Using Scopes
	Variant A: Use of a Global Scope
	Variant B: Use of Three or More Main Scopes

	The Position of the START Node
	Store Some Workflow Scripts in the Admin-Tool
	When to Use Admin-Tool Workflow Scripts
	How to Use Admin-Tool Workflow Scripts

	Consider the Use of Trigger Combinations Well
	Do Not Trigger Ticket Update Events If Not Really Required
	How to Use the Disable Auto Update Parameter
	Avoid Self-Triggering Business Event Triggers

	Deploying Workflows
	Introduction and Workflow Life Cycle
	Engineer Rights Required for Workflow Deployment
	Actions During Workflow Deployment

	Appendix A - List of Annotations
	Alphabetical List of Field Annotations (up to Version 6.9.3)
	Alphabetical List of Group Annotations (Version 6.8 and Older)
	Alphabetical List of Group Annotations (Version 6.9 and Higher)

	Appendix B - Glossary
	Appendix C - System Properties
	System Properties Ordered by Module
	System Properties Ordered by Property Name

	Appendix D - Trademarks
	Index

