

ConSol*CM Process Designer Manual (CM up to version

6.9.3)

2 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Table Of Contents

1 Introduction to the ConSol*CM Process Designer __ 6

1.1 ConSol*CM for Business Process Management __ 7

1.2 This Manual __ 8

1.2.1 Before You Read this Book ... __ 8

1.2.2 The Book's Structure ___ 8

1.2.3 Layout Explanations __ 8

1.3 Business Processes __ 10

1.4 Introduction to Workflows in ConSol*CM __ 11

1.5 The ConSol*CM Process Designer at a Glance _______________________________________ 12

1.5.1 Modeling Workflows ___ 12

1.5.2 Tickets and Activities __ 13

1.5.3 Drag & Drop Modeling of Workflow Components ________________________________ 14

1.5.4 Scopes and Nesting of Scopes __ 15

1.5.5 Modeling Escalation Mechanisms (Triggers and Wait States) _______________________ 15

1.5.6 Modeling Interrupts and Exceptions ___ 16

1.5.7 Scripting Capabilities __ 16

1.5.8 Versioning of Workflows __ 17

2 Basic Components of ConSol*CM Processes ___ 18

2.1 General Objects ___ 19

2.2 Data Fields ___ 21

2.2.1 Data Fields in ConSol*CM Versions 6.8 and Earlier ______________________________ 21

2.2.2 Data Fields in ConSol*CM Versions 6.9 and Higher ______________________________ 21

2.3 Standard Ticket Data Fields __ 23

3 ConSol*CM Process Designer Manual - Work with the Process Designer Application _____________ 24

3.1 Work with the Process Designer Application __ 25

3.1.1 Steps to Perform for a New Process __ 25

3.1.2 Start of the Process Designer ___ 25

3.2 Process Designer GUI ___ 27

3.2.1 Introduction to the Process Designer GUI Elements ______________________________ 27

3.2.2 The Script Editor ___ 42

4 ConSol*CM Process Designer Manual - Components of ConSol*CM Workflows __________________ 44

4.1 Components of ConSol*CM Workflows __ 45

4.1.1 Introduction ___ 45

4.2 Workflow Components: START Node ___ 46

4.2.1 Properties of a Start Node __ 46

4.3 Workflow Components: END Nodes __ 48

4.3.1 Properties of an End Node __ 49

4.4 Workflow Components: Scopes ___ 51

4.4.1 Introduction to Scopes ___ 51

4.4.2 Defining a New Scope ___ 53

4.4.3 Properties of a Scope __ 55

4.4.4 Scopes and Views __ 56

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 3

4.5 Workflow Components: Activities __ 57

4.5.1 Introduction to Activities __ 57

4.5.2 Properties of an Activity __ 59

4.5.3 Process Logic of Activities __ 61

4.5.4 Examples for Activities ___ 62

4.6 Workflow Components: Decision Nodes ___ 67

4.6.1 Introduction to Decision Nodes __ 67

4.6.2 Properties of a Decision Node ___ 67

4.6.3 Example for a Decision Node __ 68

4.7 ConSol*CM Process Designer Manual - Adornments (Triggers and ACFs) __________________ 71

4.7.1 Adornments (Triggers and ACFs) __ 71

4.7.2 Time Triggers __ 72

4.7.3 Mail Triggers __ 83

4.7.4 Business Event Triggers ___ 91

4.7.5 Activity Control Forms (ACFs) __ 102

4.8 Jump-out and Jump-in Nodes __ 110

4.8.1 Introduction __ 110

4.8.2 Jump-out Nodes ___ 111

4.8.3 Jump-in Nodes __ 113

5 Process Logic __ 115

5.1 Activities __ 116

5.2 Interrupts and Exceptions ___ 117

5.2.1 Interrupts __ 117

5.2.2 Exceptions ___ 118

5.3 Loops (Errors in Workflows) ___ 119

5.4 Process Logic of Time Triggers ___ 120

5.5 Process Logic of Business Event Triggers __ 121

6 ConSol*CM Process Designer Manual - Workflow Programming _____________________________ 122

6.1 Workflow Programming ___ 123

6.1.1 Introduction __ 123

6.1.2 Additional Tools for Workflow Programming ___________________________________ 123

6.1.3 Notes About Method Syntax ___ 124

6.2 Important Classes and Objects ___ 126

6.2.1 Introduction __ 126

6.2.2 Important Objects __ 126

6.2.3 Convenience Classes and Methods __ 127

6.3 Working With Data Fields ___ 130

6.3.1 Introduction to Data Fields ___ 130

6.3.2 Data Types for Data Fields __ 132

6.3.3 Custom Fields for Ticket Data __ 133

6.3.4 Data Fields for Customer Data __ 141

6.3.5 Using Data Fields for (Invisible) Variables _____________________________________ 149

6.4 Sending E-Mails __ 150

6.4.1 Introduction to Sending E-Mails ___ 150

6.4.2 Important Methods ___ 150

6.4.3 Examples __ 151

4 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.5 Working with Path Information ___ 157

6.5.1 Introduction __ 157

6.5.2 Retrieve Path Information for a Workflow Element ______________________________ 157

6.5.3 Examples for the Use of Path Information _____________________________________ 158

6.6 Working with Calendars and Times __ 159

6.6.1 Introduction __ 159

6.6.2 Calculating with Dates and Times without a CM Business Calendar _________________ 160

6.6.3 Calculating with Dates and Times Using a CM Business Calendar __________________ 161

6.7 ConSol*CM Process Designer Manual - Working with Object Relations ___________________ 162

6.7.1 Working with Object Relations __ 162

6.7.2 Working with Ticket Relations __ 163

6.7.3 Working with Customer Relations (Data Object Relations) ________________________ 170

6.8 Searching for Tickets and Customers Using the ConSol*CM Workflow API _________________ 178

6.8.1 Introduction __ 178

6.8.2 Searching for Tickets ___ 178

6.8.3 Searching for Units (Contacts and Companies) _________________________________ 182

6.9 Debug Information ___ 184

6.9.1 Introduction __ 184

6.9.2 Using Statements for Debug Output ___ 184

7 Best Practices __ 186

7.1 The Basic Organization of a Workflow: Using Scopes _________________________________ 187

7.1.1 Variant A: Use of a Global Scope ___ 187

7.1.2 Variant B: Use of Three or More Main Scopes _________________________________ 188

7.2 The Position of the START Node ___ 190

7.3 Store Some Workflow Scripts in the Admin-Tool _____________________________________ 191

7.3.1 When to Use Admin-Tool Workflow Scripts ____________________________________ 191

7.3.2 How to Use Admin-Tool Workflow Scripts _____________________________________ 191

7.4 Consider the Use of Trigger Combinations Well ______________________________________ 193

7.5 Do Not Trigger Ticket Update Events If Not Really Required ____________________________ 196

7.6 How to Use the Disable Auto Update Parameter _____________________________________ 197

7.7 Avoid Self-Triggering Business Event Triggers _______________________________________ 199

8 Deploying Workflows ___ 200

8.1 Introduction and Workflow Life Cycle __ 201

8.2 Engineer Rights Required for Workflow Deployment __________________________________ 202

8.3 Actions During Workflow Deployment __ 203

9 Appendix A - List of Annotations __ 205

9.1 Alphabetical List of Field Annotations (up to Version 6.9.3) _____________________________ 206

9.2 Alphabetical List of Group Annotations (Version 6.8 and Older) __________________________ 220

9.3 Alphabetical List of Group Annotations (Version 6.9 and Higher) _________________________ 227

10 Appendix B - Glossary __ 230

11 Appendix C - System Properties __ 236

11.1 System Properties Ordered by Module ___ 237

11.2 System Properties Ordered by Property Name _______________________________________ 286

12 Appendix D - Trademarks ___ 336

13 Index ___ 337

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 5

6 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

1 Introduction to the ConSol*CM Process

Designer

Introduction to the ConSol*CM Process Designer

ConSol*CM for Business Process Management

This Manual

Before You Read this Book ...

The Book's Structure

Layout Explanations

Business Processes

Introduction to Workflows in ConSol*CM

The ConSol*CM Process Designer at a Glance

Modeling Workflows

Tickets and Activities

Drag & Drop Modeling of Workflow Components

Scopes and Nesting of Scopes

Modeling Escalation Mechanisms (Triggers and Wait States)

Modeling Interrupts and Exceptions

Scripting Capabilities

Versioning of Workflows

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 7

1.1 ConSol*CM for Business Process Management

ConSol*CM is a . Using ConSol*CM you cancustomer centric business process management system

control and steer business processes with a strong focus on human communication and interaction, e.g.

user help desk, customer service processes, marketing and sales, or ordering processes. Basically, every

process that is in operation in a company can be modeled and brought to life with ConSol*CM6.

Using ConSol*CM you can handle all components which are relevant in business processes to represent

and control your company's processes in an optimal way. ConSol*CM is used in various different industries

and branches ranging from insurances and banks over fashion designing companies to producers of ticket

vending machines or car washes. The flexible process designing mechanism and workflow engine provide a

perfect basis for the modeling and controlling of business processes of different kinds.

8 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

1.

2.

3.

4.

5.

6.

1.2 This Manual

1.2.1 Before You Read this Book ...

When you read this manual, your company is presumably using ConSol*CM6 as a business process

management tool and it is your job to administer the system and to implement your company's processes in

the application. The book will help you to understand the principles of ConSol*CM workflows and to learn the

work with the Process Designer. Numerous provided by our experienced consultants will helptips and tricks

you to find the best way to improve your processes.

Before you start work with the Process Designer you should have a profound knowledge of ConSol*CM

administration, because programming CM workflows requires the usage of several CM components which

are configured before (or while) the workflow development takes place. So please read the ConSol*CM

 first.Administrator Manual

1.2.2 The Book's Structure

First, some basic components of business processes in general are explained (see this section).

Then, an overview of the implementation of the processes in ConSol*CM is given (see section Basic

).Components of ConSol*CM Processes

Following this, the Process Designer is explained in detail (see sections Work with the Process

 and).Designer Application Components of ConSol*CM Workflows

The sections , , and provide expert knowledgeProcess Logic Workflow Programming Best Practices

about workflow development.

Since every workflow has to be deployed to become active, the section treatsDeploying Workflows

this topic.

In the appendices, you find lists of all important terms that are used in the book (glossary), of all

annotations (important for the GUI design), and properties (important for the CM system

management). Please see also the trademarks page.

1.2.3 Layout Explanations

In order to emphasize and/or mark a section, icons are used.

Information:

This is an additional information.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 9

Attention:

This is an important note. Be careful here!

Warning:

This is a warning!

Tip:

This is a recommendation from our every-day consulting life.

10 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

1.3 Business Processes

In a business process, a certain number of tasks have to be performed in a defined order to achieve a

specific goal.

The following components are (usually) relevant in business processes. Please see section Basic

 to gain an overview of the ConSol*CM objects which represent thoseComponents of ConSol*CM Processes

components.

Process

This is a collection of tasks which have to be performed in a certain order. Tasks might be serialized

or performed in a parallel way. In ConSol*CM, the process is modeled by one or more workflows.

ConSol*CM can model single processes and can also manage complex process chains.

Each process has to have a defined input and a defined output. The object which represents a case

and which runs through the process is a . For the end user, it can be named or orticket Ticket Case

any other required term.

Roles and responsibilities

Usually, the persons who work in a process represent different roles, i.e. different responsibilities. In

ConSol*CM each engineer, i.e. each person who works with the system, can have one or more roles.

Access permissions

A business process management system can control various processes in a company. Therefore the

assignment and control of access permissions is a core functionality. In ConSol*CM, the access

permissions are assigned to roles.

Customer

This is the person who has an interest in the outcome of the process. In ConSol*CM, there is always

one main customer for a ticket. This can be a person, i.e. a contact, or this can be a company. More

customers can be added.

Tasks

In a business process, there might be several kinds of tasks:

manual tasks

system-aided tasks

fully automatic tasks

ConSol*CM can manage all types of tasks. For manual tasks, there are to-do lists for the engineer

and several mechanisms which guarantee that no task will be forgotten or ignored.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 11

1.4 Introduction to Workflows in ConSol*CM

One of the core components of ConSol*CM is a powerful workflow engine. Hence, a process is represented

in ConSol*CM by a . This is the technical representation of the consecutive steps which areworkflow

required to fulfill all steps which should be performed during the business process.

Examples:

In an IT helpdesk environment, a workflow could consist of the steps:

 - - - - .New Ticket Accept Ticket Work on Solution Inform Customer Close Ticket

In a sales process these steps could be:

 - - - .First Contact: Lead Second Contact: Opportunity Contract Candidate Contract

The workflow containing all required steps runs in a workflow engine. In this manual you will get to know the

details about all components of a workflow and how to use them to build the workflow which represents your

business process.

A workflow ...

represents a specific process, e.g. the steps that have to be performed to handle a customer request.

puts activities and decisions in a defined order.

defines the possible paths a ticket can take.

The case or request which has to be dealt with is represented by a , i.e this is the object which passesticket

through the workflow.

The following picture shows the graphical representation of a simple help desk process.

Fig. 1: ConSol*CM Process Designer - Process: Simple Representation

12 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

1.5 The ConSol*CM Process Designer at a Glance

1.5.1 Modeling Workflows

A business process is modeled in ConSol*CM using the , an application which is anProcess Designer

integral element of a standard ConSol*CM installation. A process can be represented by one or more

workflows, i.e. you use the to develop workflows.Process Designer

In ConSol*CM terminology, a always represents the technical entity, whereas a workflow process

represents the business process from the logical or management point of view.

One of the Process Designer's advantages is that there is no procedural gap between process design and

workflow implementation. You can design a workflow for a process using the graphical interface of the

Process Designer and as soon as you have assigned the workflow to a queue and have defined roles and

users, the process comes alive and engineers can work with it. That means you can use the Process

Designer for both steps which are of importance when you want to create IT-supported business processes:

Model and design the process from a logical point of view

Implement the process in a technical instance

Due to this flexibility, you can start with a simple version of a workflow, usually in a test environment, and

develop the desired functionalities of the process using an iterative approach. In each step of the

development and optimization process the team of engineers can test if the use cases are represented as

desired.

The graphical representation of a workflow in the Process Designer is very similar to the Business Process

 (BPMN) and can be handled in a very intuitive way.Model and Notation

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 13

Fig. 2: ConSol*CM Process Designer - Workflow Modeling the Process in the Previous Figure

Read the following sections to get a first impression of the Process Designer's features and functionalities.

All topics will be explained in detail in the respective chapters of the manual.

1.5.2 Tickets and Activities

Each case, which has to be treated, will be represented by a . Thus a ticket is a concrete run through aticket

workflow. This can be a request, an order, or any other task which has to be processed in a business

process.

When a new ticket is created within ConSol*CM, it is associated with a workflow (via the queue it belongs

to). At first the new ticket is in the START node. During its further life cycle the ticket runs through the

various activities of the workflow. Its life cycle ends when it has reached an END node.

14 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

You model a process in a workflow by connecting activities in a specific order. The result is a directed flow

graph. It shows which activities have to be carried out for a ticket in order to run through the workflow (and

thus the business process) successfully. Workflows can have branches so that different flow paths are

possible. In this way, you can make sure that, for example, a ticket first has to be accepted, then the problem

has to be solved, then the solution has to be documented. Only then the ticket can be closed.

Fig. 3: ConSol*CM Process Designer - Two Sequential Manual Activities

There are manual and automatic activities. Manual activities require engineer interaction and are offered as

 in the Web Client. In contrast, automatic activities are performed without any human inputWorkflow activities

and are kept away from the engineer. This enables ConSol*CM to save time for the engineer and to process

data from various sources behind the scenes. Only when user interaction is required, the process will come

to a halt and wait for engineer input.

Fig. 4: ConSol*CM/Web Client - Workflow Activities

1.5.3 Drag & Drop Modeling of Workflow Components

You can develop your workflow easily and intuitively using drag-and-drop. Drag the required workflow

elements, e.g. an activity or a decision node, from the palette to the work space and link them. Then adjust

the properties of the elements within the Properties Editor.

Fig. 5: ConSol*CM Process Designer - Drag & Drop Activities

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 15

Using basic elements you build complex workflows step by step. In this way you can model even the most

sophisticated business processes.

1.5.4 Scopes and Nesting of Scopes

During a process, a ticket passes through different status, e.g. new ticket, pre-qualification, active work, and

documentation. It might even have to be set on hold for a certain period of time. All those status are

represented by scopes. In each scope, there can be one or more activities. In this way, it is easy to develop

workflows with a clear structure. Scopes can even be organized in a hierarchical way, e.g. during

documentation the ticket has to be set on hold. So, using hierarchical scopes you can even keep track of

complicated processes. Choose the level of detail you need any time you want.

Fig. 6: ConSol*CM Process Designer - Nesting Scopes

1.5.5 Modeling Escalation Mechanisms (Triggers and Wait

States)

In most business processes, adherence to schedules and deadlines is indispensable. ConSol*CM helps

stick to deadlines and prevents delays by providing automatic timer triggers. These triggers measure for

example the reaction time or they initialize reminders.

Fig. 7: ConSol*CM Process Designer - Triggering Processes

16 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

1.5.6 Modeling Interrupts and Exceptions

In the real world, tasks of a process are not always performed step by step, but may be interrupted by

exceptional events. These can be various external incidents. To model such interrupts sequentially is often

very complex or even impossible. The Process Designer provides extensive tools to do this.

Fig. 8: ConSol*CM Process Designer - Modeling Interrupts

1.5.7 Scripting Capabilities

The process which has been modeled as a ConSol*CM workflow cannot only consist of basic elements like

activities or decision nodes. In every node of the workflow a script can be added to provide the ofintelligence

the process. For example, e-mails can be sent to customers or to engineers, interactions with other systems

can be implemented, tickets can be handed-over. Basically, all operations which can be implemented in

Groovy scripts can be performed.

Fig. 9: ConSol*CM Process Designer - Script of an Activity

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 17

1.5.8 Versioning of Workflows

Business processes are changing constantly, following the changing requirements of the economic and

technical environment. The Process Designer provides continuous versioning of installed workflows. In this

way, you can easily discard a new workflow (e.g. when you have tested a new implementation during system

development) and go back to one of the previous versions.

Fig. 10: ConSol*CM Process Designer - Workflow Versions

18 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

2 Basic Components of ConSol*CM Processes

Basic Components of ConSol*CM Processes

General Objects

Data Fields

Data Fields in ConSol*CM Versions 6.8 and Earlier

Data Fields in ConSol*CM Versions 6.9 and Higher

Standard Ticket Data Fields

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 19

2.1 General Objects

During process design and workflow development you will have to deal mainly with the following objects:

Mandatory objects:

Ticket

This represents the case. Depending on the use case this can be, for example, a help desk case, a

sales opportunity, a direct order, or a service request.

Primary customer

This is the person, i.e. the contact, who is the client, the initiator of the ticket. In ConSol*CM version

6.9 and higher, this can also be a company. The customer represents the external side of the ticket.

Queue

This is the organizing unit within the ConSol*CM system which groups tickets of one realm and which

is access point for the assignment of access permissions and of the workflow. One queue has exactly

one workflow which cannot be changed. For example, in a company, there could be one queue for the

sales department, one for the customer service, and one for the internal IT.

Engineer

This is the person who is responsible for completing the tasks in the ticket. A ConSol*CM engineer

has a login and password for the Web Client. The main engineer can also be called the ticket owner.

It can change during the process.

Workflow

This is the design or model for the process. A workflow is assigned to a queue (and can be assigned

to more than one queues). Hence, all tickets which are in this queue run through the process defined

by this workflow. The workflow elements, e.g. activities, conditions, or decisions, represent the most

important means in ConSol*CM to configure and control the process flow. One workflow can be

assigned to one or to several queues, e.g. the IT service desk team as well as the customer service

team, both could work with the workflow .serviceWorkflow

Custom fields (CM versions 6.8 and 6.9) and (CM version 6.9)data object group fields

These are the data fields which are used to define the data model for the ticket and customer data.

They also determine the GUI design of the Web Client. Custom fields are never defined on a

single-field basis, but always in .custom field groups

In ConSol*CM version 6.9 and higher, we call the data fields for ticket data and the datacustom fields

fields within the customer data model .data object group fields

Optional objects:

One or more additional customer(s)

In addition to the main customer, i.e. main contact or (version 6.9 and higher:) main company, more

contacts (or companies) can be added to a ticket. For each additional customer a customer role might

be assigned. For example, there might be a representative for someone who has opened the ticket or

the team manager should also be a contact for a support case. An additional customer can become

the main customer during the process and vice versa.

20 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

One or more additional engineer(s)

Additional engineers can be added to a ticket in specific roles which are defined as required. For

example, a supervisor might be set as additional engineer to give an approval (role) or a QAapprover

team member can be added to the ticket in the role to check the result before the ticket is closed.QA

Fig. 1: ConSol*CM - Basic Principle

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 21

2.2 Data Fields

2.2.1 Data Fields in ConSol*CM Versions 6.8 and Earlier

Custom fields are data fields of a specific data type which can contain ticket or customer data. The custom

fields in their entirety define the data model of the ConSol*CM system. All custom fields can be configured

as required, i.e. you as a system administrator can create as many custom fields as you think suitable and

can place them in the Web Client GUI where you like or where the best usability will be given.

Custom fields are always managed in never on a single-field basis. Of course, you cancustom field groups

read or set the value of a single field when you write workflow scripts, but in the Admin-Tool as well as in the

Process Designer, a great number of operations can only be performed for custom field groups, e.g.

fading-in the group, placing the group data in a tab, or assigning the custom field group to a queue. In

scripts, in general, you access a field using the following notion:

Access to content of custom field, CM versions 6.8 and earlier

ticket:

ticket.get("<group name>.<field name>")

unit:

unit.get("<field name>")

The initial definition of custom field groups and custom fields is done using the Admin-Tool. Ticket data are

defined in the section for and in the respective tabs.Custom Field Administration Ticket data Customer data

2.2.2 Data Fields in ConSol*CM Versions 6.9 and Higher

Starting with CM version 6.9.0, there are two types of data fields:

Custom fields

Used to define ticket data, managed in custom fields groups, as known from previous CM versions.

Data object group fields

Used to define customer data as part of the FlexCDM, the new customer data model. Managed in

data object groups.

You can access the content of a custom field or a data object group field using the following notation:

Access to content of data object group field, CM versions 6.9 and higher

ticket:

ticket.get("<group name>.<field name>")

unit, for one field:

unit.get("<group name>:<field name>")

22 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 23

2.3 Standard Ticket Data Fields

Some fields do not have to be defined as custom fields in the Admin-Tool, because they are always present.

These are the following fields of a ticket:

Ticket ID

Invisible for the user, only internal use in the database.

Ticket name

Visible in the Web Client, usually called ticket number.

Ticket subject

Must be set.

Create date

Is set automatically by the system.

Engineer/ticket owner

Can be null or one of the engineers.

Queue

The current queue of the ticket.

24 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

3 ConSol*CM Process Designer Manual - Work

with the Process Designer Application

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 25

1.

2.

3.

4.

5.

6.

3.1 Work with the Process Designer Application

Work with the Process Designer Application

Steps to Perform for a New Process

Start of the Process Designer

3.1.1 Steps to Perform for a New Process

The work with the Process Designer is one of the first steps in the pipeline of steps which you have to

perform when you want to create a new process with users, roles etc. Before we start explaining how to work

with the Process Designer, we will therefore provide a short list of tasks you have to do:

Design and deploy the workflow using the Process Designer.

Create a new queue with this workflow. Here, you will also need the definition of all required custom

fields and customer groups.

Create the views for the new users/engineers using the scopes of the new workflow.

Create one or more role(s) that have access to the new queue. Keep in mind that the access to the

customer group(s) must match that of the queue.

Create one or more engineers/users and assign the new role(s) to them.

Check the login in the Web Client. Can you create a ticket in the new role?

3.1.2 Start of the Process Designer

You can start the Process Designer on every PC or laptop where a standard web browser is installed

(please see) and which has network access to the ConSol*CM server and database.System Requirements

To start the Process Designer, open the ConSol*CM start page and click on the Process Designer hyperlink.

Java Web Start (JWS) is required to start the Process Designer application which runs on the local machine.

However, JWS is an integral part of all Java distributions nowadays so that should not be a problem.

Information:

In case the Process Designer cannot be started, the network connection might be the problem. On

Windows systems, check the Java parameters for network connections. Use direct connection

might be required. On Linux systems, check the proxy settings.

26 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 1: ConSol*CM - Start of the Process Designer

Log in with an administrator account or with an account which has the workflow management permissions.

Please refer to the , section , for details.ConSol*CM Administrator Manual Role Administration

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 27

3.2 Process Designer GUI

Process Designer GUI

Introduction to the Process Designer GUI Elements

Overview: GUI Sections

Main Menu

Workflow Editing Panel

Loading and Deleting Workflows

Loading a Workflow

Deleting a Workflow

Palette for Elements and Adornments

Elements

Adornments

The Properties Editor (Example: Activity)

The Script Editor

3.2.1 Introduction to the Process Designer GUI Elements

Overview: GUI Sections
The Process Designer GUI contains the following elements, please see the next figure and the list below.

Fig. 1: ConSol*CM Process Designer - GUI Elements

28 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Main Menu
The main menu contains the menu items as text entries and a menu icon list.

Menu main entry Menu sub entry Icon Note

File

New ... Start a new workflow.

Load ... Load a new workflow.

Opens table with

existing workflows, see

section Loading a

.Workflow

Delete ... Delete a workflow.

Opens table with

existing workflows, see

section Deleting a

.Workflow

Import ... Import a workflow from a

(proprietary workflow

format) file.

Save ... Save workflow (existing

version).

Save as new version Save the workflow as a

new version.

Export Export the workflow to a

file. Opens file browser

of the operation system.

The workflow is saved in

a proprietary workflow

format ()..par

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 29

Menu main entry Menu sub entry Icon Note

Deploy (Save as new version

and) deploy the

workflow, i.e. install the

workflow in the system.

The system might

prompt you for a

decision:

Keep position of

the tickets in the

process (see

section Actions

During Workflow

).Deployment

Start at START

node again.

Log in Log in to the Process

Designer. Usually the

login window is

displayed directly after

the start of the Process

Designer. As login an

account with

administrator

permissions or with the

permissions to manage

workflows (see ConSol*

CM Administrator

, section Manual Role

) isAdministration

required.

Log out Log out. Does not exit

the Process Designer.

Exit Exit/stop the Process

Designer application.

Edit

Clear current tab Delete the entire

workflow, all elements in

the main editing panel.

Options

30 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Menu main entry Menu sub entry Icon Note

Local configuration Display pop-up window

where you can select

the display language of

the Process Designer.

All languages which

have been configured

for the system (see

section inConfiguration

the ConSol*CM

)Administrator Manual

are available. The labels

in the workflow in the

main editing panel will

be displayed in the

selected language.

View

Normal zoom Display workflow in

default zoom (like at

start of Process

Designer).

Expand all scopes Display all scopes in the

expanded version.

Collapse all scopes Display all scopes in the

collapsed version.

Hide/Show palette Do (not) display palette

in GUI.

Hide/Show properties Do (not) display

Properties Editor in GUI.

Hide/Show explorer Do (not) display explorer

(tree).

Show ticket transfer

history

Opens a pop-up window

where the parameters

for the ticket transfer

during the deployment

of a new workflow are

displayed:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 31

Menu main entry Menu sub entry Icon Note

Workflow name

Name of the

workflow.

Version

Version of the old

workflow.

Start time

Start of the

transfer, will be

the start time of

the operatDeploy

ion.

End time

End of the

transfer, after this

time the new

workflow will be

in full operation.

Transferred

tickets

Number of tickets

which have been

transferred, i.e.

which had to be

touched by the

system during

workflow

deployment.

Should be

identical to the

sum of open

tickets in all

queues which

use the workflow.

Details

Additional

information

concerning the

deployment with

ticket transfer.

32 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Menu main entry Menu sub entry Icon Note

IDE log Opens the Log File

Editor in the lower half

of the screen and

displays the

user-specific log file of

the Process Designer:

<USER_HOME_DIR>\.c

mas\wfeditorR1\var\log

Help

About Display version

information about the

Process Designer and

about the Java virtual

machine it uses in the

current configuration

(this is the JVM of the

browser plug-in).

Workflow Editing Panel
To design a workflow define the workflow elements using the graphical layout mode of the Process Designer

and add the scripts to the elements where required.

A new element can be added to the workflow using drag-and-drop of the element from the palette.

A new element as successor of an existing element can also be created by using the context menu (right

mouse click) of an existing element, e.g. for an activity (see the following figure). The new element and the

connection to this element will be created.

Fig. 2: ConSol*CM Process Designer - Context Menu for a Workflow Activity

A new connection between elements is established using the left mouse button while pressing the keyCTRL

and just drawing the line. If the connection goes from one scope to another, the scope entry and exit points

are added automatically.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 33

Fig. 3: ConSol*CM Process Designer - Adding New Elements and Connections

You might consider using a global scope for each workflow. Please refer to the section forBest Practices

more information about how to design good workflows.

Loading and Deleting Workflows

Loading a Workflow
When you have selected the icon or menu item , a table with all available workflows is displayed.Load

Fig. 4: ConSol*CM Process Designer - Load a Workflow

34 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

The table can be sorted based on a column by clicking on the little triangle icon next to the column header.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 35

The table contains the following columns:

name

The name of the workflow as set in the property of the workflow (click into the white spacename

around the global scope to see it for a workflow).

version

The version of the workflow. This is assigned automatically by the ConSol*CM system. When a

scenario has been exported and is imported again, the numbering will start with 1.0 anew.

status

For older workflows this field is empty. The workflows which are deployed are described by currently

.deployed

modification date

The date of the last modification (date when the workflow was saved) is indicated.

workflow description

The description which has been entered into the field (!).workflow description not description

To load a workflow, select it in the list and click . Only single selection is possible.Load

Deleting a Workflow
When you have selected the icon or menu item , a table with all available workflows is displayed.Delete

Fig. 5: ConSol*CM Process Designer - Delete a Workflow

The table can be sorted based on a column by clicking on the little triangle icon next to the column header.

The table contains the following columns:

name

The name of the workflow as set in the property of the workflow (click into the white spacename

around the global scope to see it for a workflow).

36 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

version

The version of the workflow. This is assigned automatically by the ConSol*CM system. When a

scenario has been exported and is imported again, the numbering will start with 1.0 anew.

status

For older workflows this field is empty. The workflows which are deployed are described by currently

.deployed

modification date

The date of the last modification (date when the workflow was saved) is indicated.

workflow description

The description which has been entered into the field (!).workflow description not description

To delete one or more workflow(s), select it/them in the list and click . For every workflow you areDelete

prompted to confirm the deletion, so when you have marked a great number of workflows to delete and then

you realize that you would like to keep one of them this is possible without canceling the entire operation.

Information:

You might want to delete all or almost all older workflows before exporting a scenario, because a

great number of workflows increases the size of the scenario considerably. For export and import

of scenarios, please refer to the respective section in the .ConSol*CM Administrator Manual

Palette for Elements and Adornments
As a default setting the palette is displayed in the top right corner. You can hide (and re-display) the palette

using the main menu entry under .Hide/Show palette View

The palette contains two types of workflow components:

elements

adornments

Elements
Elements are basic components which form the workflow and represent the process logic.

Icon Element Note Section

Start node Is set automatically, no

other start node than the

default start node can

be added.

START Node

End node A workflow can contain

one or more end nodes.

END Nodes

Activity The actions in the

workflow, manual or

automatic.

Activities

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 37

Icon Element Note Section

Scope The highest hierarchy

level in workflows

Scopes

Decision Decision node which

has a and a extrue false

it point.

Decision Nodes

Jump-in Entry point for tickets

from other

workflows/queues.

Jump-out and Jump-in

Nodes

Jump-out Exit point for tickets. A

target queue has to be

defined. A target node

can be defined but is

optional.

Jump-out and Jump-in

Nodes

Adornments
Adornments are objects which are assigned to a workflow activity or to a scope. Please see indicated

sections for detailed explanations.

Icon Adornment Note Section

Time trigger Can measure time

intervals. Fires when the

end of the interval has

been reached. Can

optionally use a

business calendar.

Time Triggers

Mail trigger Fires when an e-mail for

the ticket has come in.

Mail Triggers

Business event trigger Fires when an event has

occurred. The type of

event can be specified

(e.g. change of

engineer, change of

priority).

Business Event Triggers

ACF (Activity Control

Form)

Defines the ACF which

should be displayed

when the activity is

executed. ACFs are

defined in the

Admin-Tool.

Activity Control Forms

(ACFs)

38 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

The Properties Editor (Example: Activity)
The Properties Editor is opened for the element which has been selected in the main editing panel and

contains component-specific parameters. Some general parameters are present for all components, some

are present only for a certain type of component.

Fig. 6: ConSol*CM Process Designer - Selected Activity in Workflow

Fig. 7: ConSol*CM Process Designer - Properties Editor

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 39

Properties:

name

Mandatory. This is the technical object name. When an object is newly created, you can edit the label

and the object name will be generated automatically from the label (umlauts are omitted). Afterwards,

the object name is never changed automatically but can be edited manually. Allowed characters for

names are:

letters (small or capital), but no umlauts

underline

numbers

label

The localized name of the element. All languages which have been configured for the system are

available and can be filled. In the web browser of the engineer the description will be displayed

according to the browser locale. If it is not available, the label will be displayed using the default

locale.

Fig. 8: ConSol*CM Process Designer - Localization for Labels

40 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

description

Optional. A localized text can be entered which will be displayed as mouse-over in the Web Client.

This might help the engineer to understand what will happen when the respective workflow activity is

executed.

Fig. 9: ConSol*CM Process Designer - Localized Description of an Activity

Fig. 10: ConSol*CM/Web Client - Localized Description of an Activity as Mouse-over

sort index

Defines:

For activities:

The order of the activities in the list of in the Web Client. The higher theWorkflow activities

number the more at the bottom of the list the activity is offered in the Web Client.

For scopes:

The order of the tickets in the ticket list (Web Client) in views. The higher the scope index the

more at the top of the list the tickets are displayed.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 41

overlay

Optional, for activities. Click into the orange space to define a standard ConSol*CM overlay or one

that has already been uploaded. Click on the file explorer (...) button to open the file explorer of the

operation system for an upload of a new icon. When the ticket passes through an activity the overlay

is added to the ticket icon in the Web Client. As a maximum, three overlays can be attached to a

ticket icon. This mechanism can be used for several purposes, some examples are:

An escalation:

The ticket has been opened without any engineer taking care of it.

An e-mail:

The ticket has received an e-mail.

A note for the engineer:

E.g. another engineer has added a comment to ticket.my

Fig. 11: ConSol*CM Process Designer - Properties Editor: Standard Overlays and One

Customer-Defined Overlay

Fig. 12: ConSol*CM/Web Client - Icons with Overlays

overlay range

Only displayed when an overlay has been set.

activity

The overlay is attached only as long as the ticket stands behind the activity. As soon as the

next activity is executed, the overlay is deleted from the ticket icon.

scope

The overlay is deleted when the ticket leaves the scope.

process

Once the overlay has been attached to the ticket icon, it stays there for the rest of the process.

next overlay

The overlay is attached to the ticket icon as long as no new overlay appears. In that case, only

the new one is attached, the old one is deleted.

precondition

Optional, for activities. A script can be entered using the Script Editor (see section)The Script Editor

which has to return or . The script is executed when the previous activity has beentrue false

performed, i.e. when it becomes possible to display the activity with the precondition. In case istrue

returned, the activity is displayed, in case is returned, the activity is not displayed. An activityfalse

which has a precondition is marked by the icon .exclamation mark/precondition

script

Optional, for activities. A script can be entered using the Script Editor (see section)The Script Editor

which is executed when the ticket enters the activity.

42 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

activity type

Mandatory, for activities. or has to be selected. A manual activity is displayed in theManual Automatic

Web Client and has to be explicitly selected/executed by an engineer. In the Process Designer it is

marked by the icon .hand/manual

An automatic activity is executed without any engineer interaction. For a detailed explanation of the

ConSol*CM process logic, please see section .Process Logic

history visibility

Mandatory, but default value has been set (default). The value defines the display levels of the Web

Client GUI where the action (that the activity has been performed) should be displayed:

2nd level and 3rd level

only 3rd level

on every level

default

This refers to the value defined in the Admin-Tool under for the activityTicket History

configuration. Depending on the type of activity, one of the following parameters is used:

Manual activity or activity with overlay executed

Activity executed after escalation

Automatic activity executed

Fig. 13: ConSol*CM/Web Client - Display Levels in Ticket History

disable auto update

Defines ticket behavior of the ticket when an event has been fired or executed. Usually, after an

event, a ticket update operation is performed automatically. In case a chain of events is used you

should avoid triggering a ticket update operation after every single event. To avoid this, set disable

 to in all events except for the last one. Then, only after the last event, the ticket isauto update true

updated.

3.2.2 The Script Editor

You use the Script Editor in the Process Designer to write Groovy scripts (i.e. pure Groovy and Java code is

accepted). For explanations, recommendations, and examples concerning workflow programming using

scripts, please see section .Workflow Programming

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 43

Fig. 14: ConSol*CM Process Designer - Script Editor

The Script Editor provides the following features:

Syntax highlighting

Groovy code is highlighted according to key words.

Code completion

When you have entered the name of an object and the dot, the possible methods are suggested.

Press + to activate code completion.CTRL SPACE

Code check

The entered code is controlled according to the correct use of general syntax and methods. The error

code is displayed in the panel.Compilation result

44 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

4 ConSol*CM Process Designer Manual -

Components of ConSol*CM Workflows

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 45

4.1 Components of ConSol*CM Workflows

4.1.1 Introduction

You can work with various types of workflow components to build the workflows for your ConSol*CM system.

The palette in the Process Designer offers all elements and adornments, see section Palette for Elements

 for an overview.and Adornments

In the following chapters, all workflow elements and adornments will be explained in detail.

Workflow Element Explanation

START Node The first node in a workflow, see section START

.Node

END Node(s) One or more end nodes of the process. The ticket

is closed. See section .END Nodes

Scopes Realms of a process, see section .Scopes

Activities The steps of a process. Can be automatic or

manual, see section .Activities

Decision Nodes Workflow element which represents a detrue/false

cision, see section .Decision Nodes

Adornments Elements to control the process flow: triggers and

activity control forms. See section Adornments

.(Triggers and ACFs)

Jump-out and Jump-in Nodes Elements which connect workflows, see section Ju

.mp-out and Jump-in Nodes

46 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

4.2 Workflow Components: START Node

Workflow Components: START Node

Properties of a Start Node

Every workflow contains exactly one START node. When you create a new workflow the start node is added

automatically, you do not have to add it yourself.

Fig. 1: ConSol*CM Process Designer - Start Node

The start node does not have any scripts and cannot be configured in any way.

When a ticket enters the workflow and no specific entry point has been defined, the ticket passes through

the start node.

Best Practices:

The start node should not be positioned within the global scope. See also section .Best Practices

4.2.1 Properties of a Start Node

Fig. 2: ConSol*CM Process Designer - Start Node Properties

Properties:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 47

name

Technical object name.

label

Localized name which will be displayed on the GUI.

history visibility

See section .history visibility

disable auto update

See section .disable auto update

48 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

4.3 Workflow Components: END Nodes

Workflow Components: END Nodes

Properties of an End Node

A workflow in ConSol*CM can have one or more END nodes.

Fig. 1: ConSol*CM Process Designer - End Nodes

An end node represents the closing of the ticket, i.e. when a ticket is passed to an end node it is closed in a

technical sense. No engineer can edit the ticket anymore. The ticket can be re-opened by an administrator

using the in the Admin-Tool, please see the respective section in the Ticket Administration ConSol*CM

 for detailed information.Administrator Manual

However, assuming engineers have the required access permissions, they can still read the ticket. This is an

important basis for the use of all ConSol*CM tickets of a system as knowledge base.

The passing of the ticket to the end node can be a manual or an automatic action. In the figure above, the

end nodes are automatic nodes, i.e. the ticket passes to this node when the previous activity has been

performed.

As a minimum a workflow has to contain one end node, because there has to be a way to close the ticket.

You might want to create more than one end node. This can be helpful when you create reports, e.g. to

distinguish between positive and negative endings.

An end node might have a script, i.e. before the ticket is closed, a script can be executed.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 49

Best Practices:

Sometimes, it might be required to set a ticket to , , or from an engineer'sclosed completed done

point of view, i.e. to set a ticket to a . After a while, if there are no more questionspreliminary END

or remarks from the customer, the ticket should be closed automatically. You can achieve this by

setting a time trigger to an end activity and letting the ticket go to the end node automatically after

the defined time (see following figure).

Fig. 2: ConSol*CM Process Designer - End Nodes Reached via Time Trigger

4.3.1 Properties of an End Node

Fig. 3: ConSol*CM Process Designer - End Node Properties

50 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Properties:

name

Technical object name.

label

Localized name which will be displayed on the GUI.

description

Description which is displayed as mouse-over text.

end node type

Automatic/Manual.

script

Here, a script which should be executed when the ticket enters the end node, i.e. before the ticket is

closed, can be edited.

history visibility

See section .history visibility

disable auto update

See section .disable auto update

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 51

4.4 Workflow Components: Scopes

Workflow Components: Scopes

Introduction to Scopes

Defining a New Scope

Properties of a Scope

Scopes and Views

4.4.1 Introduction to Scopes

When a ticket passes through a process there are several positions it has to pass, all in a pre-defined order.

For example, in a service desk environment, the ticket comes in as , then it has to be pre-qualifiednew ticket

(in our example: are there any SLAs which have to be taken into consideration, is it a VIP customer?).

Subsequently, the engineer can work on the ticket and might put it on hold for a while. Then the ticket should

be closed, either as or . Those major steps of the processpositive, with solution negative, without solution

are represented as scopes in ConSol*CM workflows. See the following figure for an example workflow.

52 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 1: ConSol*CM Process Designer - Workflow with Scopes

Within each process step, there can be one or more activities, e.g. during pre-qualification, first the VIP

customer check is performed, then the SLA is checked. Those activities are described in detail in the section

. Here, only scopes are explained.Activities

A scope can be part of another scope or - seen from the opposite point of view - a scope can contain

sub-scopes.

A scope can have various types of triggers, e.g. a mail trigger fires whenever an e-mail to a ticket, which is

currently in the scope, has been received. Please see sections , , and Mail Triggers Time Triggers Business

 for details.Event Triggers

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 53

4.4.2 Defining a New Scope

In order to define a new scope, i.e. to add a new scope to the workflow, grab the scope icon in the palette

and drag-and-drop it to the workflow at the position where you would like to locate it. Activate it with a

double-click. Then you can add new activities or other elements or drag existing activities/elements into the

scope. When you connect elements by drawing arrows, the entry and exit points of a scope are defined

automatically.

54 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 2: ConSol*CM Process Designer - Automatically Generated Exit and Entry Points in Scopes

When you have defined/added the new scope you can define the scope's properties, see next section.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 55

4.4.3 Properties of a Scope

Fig. 3: ConSol*CM Process Designer - Scope Properties

The following properties can be defined for a scope:

name

The technical object name.

label

The localized name which will be displayed in the Web Client GUI.

sort index

Defines the position of tickets of this scope in a view (in case the view comprises more than one

scope).

scope icon

The icon which is displayed as scope icon in the Web Client GUI (see following figure). Click into the

blue area to pick one of the ConSol*CM standard icons or use the file browser (...) to load an icon

from the file system.

Fig. 4: ConSol*CM/Web Client - Scope Icon

Attention:

Please keep in mind that the icon is merged with the ticket color. So (in case you would like

to upload your own icons) transparent images should be used for ticket icons. Otherwise,

the background color might be lost or only be seen in a small border around the icon.

56 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

4.4.4 Scopes and Views

Views, i.e. the selection criteria for the ticket list(s), are defined based on scopes. For a detailed explanation

of views and view definition, please refer to the respective section in the .ConSol*CM Administrator Manual

In the present context, i.e. when you define scopes in the workflow, it is important to keep in mind which

views might be required later on. For example, the mechanism of , and tickets is basednew, active pending

entirely on the scope and view definition:

View: New

All new tickets in the scope .new

View: Active

All active tickets, i.e. tickets which in a scope , , or the like.are not on hold resubmission

View: Pending

All tickets which in a scope , , or the like.are on hold resubmission

That means, whenever a view is required to display only a certain sort of tickets, a scope has to be defined.

Attention:

We strongly recommend to define views which contain closed tickets!not

The number of closed tickets will grow considerably during work with the application. Therefore, the

view of closed tickets would always reach the maximum number of tickets allowed for a view

(which can be defined using a system property). This can have negative influence on the GUI

performance and in most cases the desired tickets will not even be among the first 50 or 100

tickets.

Conclusion: A view of closed tickets does not help and might decrease the speed of the system for

the engineers. Only in test environments, a view for closed tickets might be an option.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 57

4.5 Workflow Components: Activities

Workflow Components: Activities

Introduction to Activities

Properties of an Activity

Process Logic of Activities

Examples for Activities

Example 1: Precondition for Displaying Activity "Inform team lead"

Example 2: Send an E-Mail to the Main Contact When a Ticket Has Been Opened

Example 3: Assign the Ticket to the Current Engineer

4.5.1 Introduction to Activities

An activity represents an action in a workflow. An activity is located within a scope and is of one of the

following types:

manual

automatic

A activity has to be performed by a manual action of the engineer using the Web Client GUI. Themanual

activity is displayed as in the Web Client (provided at least one of the roles of the engineerWorkflow activity

has the permission (please refer to the , section Execute ConSol*CM Administrator Manual Role

, for a detailed explanation). In the Process Designer, the activity is marked by the Administration

 icon .hand/manual

58 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 1: ConSol*CM Process Designer - Manual Activity in Workflow

Fig. 2: ConSol*CM/Web Client - Manual Activity

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 59

An activity is performed automatically by the system and is not displayed in the Web Client. In the automatic

Process Designer, an automatic activity is not marked by any special icon.

Fig. 3: ConSol*CM Process Designer - Automatic Activities

4.5.2 Properties of an Activity

In order to display and edit the properties of an activity, mark the activity in the Process Designer.

Fig. 4: ConSol*CM Process Designer - Activity

60 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

The Properties Editor will be opened for this activity.

Fig. 5: ConSol*CM Process Designer - Properties of an Activity

An activity can have the following properties:

name

Mandatory, technical object name.

label

Optional (if not set, the technical name is used). Localized name which will be displayed in the Web

Client. The language which is configured in the web browser is used.

description

Optional. Will be displayed as mouse-over in the Web Client.

sort index

Defines the order of the activities in the Web Client.

overlay

Optional. Click into the orange space to load standard ConSol*CM overlay icons or use the file

browser (...) to upload another icon from the file system.

overlay range

Only displayed when an overlay has been set:

activity

The overlay is attached only as long as the ticket stands behind the activity. As soon as the

next activity is executed, the overlay is deleted from the ticket icon.

scope

The overlay is deleted when the ticket leaves the scope.

process

Once the overlay has been attached to the ticket icon, it stays there for the rest of the process.

next overlay

The overlay is attached to the ticket icon as long as no new overlay appears. In that case, only

the new one is attached, the old one is deleted.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 61

1.

2.

3.

4.

5.

6.

precondition

Optional. A script can be entered which is executed when the activity should be offered in the Web

Client GUI. The script has to return or . If a precondition has been defined for an activity, thetrue false

activity is marked by the icon (see figure above).exclamation mark/precondition

Return value is .true

The activity is displayed. If it is a manual activity it can be selected/performed by the engineer

in the Web Client GUI.

Return value is .false

The activity is not displayed in the Web Client GUI

Attention:

CM version 6.9 and higher:

When you work with data object group fields, i.e. with data fields that contain customer data,

please keep in mind that it might be required to consider the data models of different

customer groups in case a workflow is used for queues which have been assigned to more

than one customer group!

script

Optional. A script can be defined which is executed when the ticket passes through the activity.

activity type

Mandatory. Either automatic or manual has to be selected. In case it is a manual activity, the activity

is marked with the icon in the Process Designer GUI.hand/manual

history visibility

See section .history visibility

disable auto update

See section .disable auto update

4.5.3 Process Logic of Activities

This is the process logic of activities:

When a ticket has passed through an activity it always waits behind this activity (and not before the

next one!).

When a ticket has passed through an activity it checks if there is an automatic activity. If yes, the

ticket passes through this automatic activity as well.

The ticket passes automatically through (automatic) activities as long as there are new automatic

activities. It comes to a halt as soon as there is/are one or more manual activities where engineer

interaction is required.

If one or more of the following manual activities have a precondition script, this script is executed in

order to decide if the activity has to be displayed in the Web Client GUI or not.

If the engineer selects the activity in the Web Client GUI, the script of the activity is executed.

If there is a , this script is executed immediately after the execution of the activitypostActivityScript

script.

62 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

7. The ticket waits behind the manual activity. If the following activity is located in a new scope, the ticket

will not enter the new scope. It always waits behind the old activity and not before the new one!

Attention:

A ticket always waits behind the last activity which has been executed and not before the new one!!

4.5.4 Examples for Activities

Example 1: Precondition for Displaying Activity "Inform team lead"
In case the ticket has been opened by a contact, i.e. a contact where the boolean field is , theVIP vip true

team lead should be informed. If it is no , the activity should not be offered. The custom field which isVIP vip

part of the customer data model is checked for this purpose.

Fig. 6: ConSol*CM Process Designer - Workflow Activities (One with Precondition Script)

Precondition script: Workflow used only for queues of one customer group

// Get the main contact of the ticket. The unit object (can be a customer or a company) is

provided;

// here it has to be a customer, i.e. a contact:

Unit contact = ticket.getMainContact()

// Check the custom field "vip" of the main contact. (see next image)

// If it is set to true, return true, i.e. the condition is TRUE.

// Else return false, i.e. the condition is FALSE:

if (contact.get("vip")) {

 return true

} else {

 return false

}

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 63

Fig. 7: ConSol*CM Admin-Tool - Data Object Group Field "vip" (CM Version 6.9)

Fig. 8: ConSol*CM/Web Client - Precondition: Return Value TRUE

Fig. 9: ConSol*CM/Web Client - Precondition: Return Value FALSE

64 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Example 2: Send an E-Mail to the Main Contact When a Ticket Has Been

Opened
When a ticket has been opened, an e-mail should be sent to the main contact of the ticket.

Fig. 10: ConSol*CM Process Designer - Automatic Activity Where Receipt Note Is Sent

Script for automatic activity where receipt note is sent, variant 1

// Get the main contact of the ticket:

def contact = ticket.getMainContact()

// Get the value of the custom field "email" of the main contact:

def contact_e = contact.get("email")

// Use as text the e-mail template with name "receipt_notice_ServiceDesk".

// Can be located in the Template Designer or in the Admin-Toool.

// Usually e-mail templates are stored in the Template Designer:

def text = workflowApi.renderTemplate("receipt_notice_ServiceDesk")

// Get the reply-to address for the e-mail.

// This is stored in the system property "cmweb-server-adapter","mail.reply.to":

def replyto = configurationService.getValue("cmweb-server-adapter","mail.reply.to")

// Build the string for the ticket subject.

// Keep in mind that the regular expression which defines the ticket identifier has to be in

this subject.

// Otherwise, an e-mail cannot be assigned to the correct ticket.

def subj = "Your request has been received: ticket (" + ticket.getId() + ")"

//Send out the e-mail

workflowApi.sendEmail(contact_e,subj,text,replyto,null)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 65

Script for automatic activity where receipt note is sent, variant 2

// all lines of code identical to variant 1 except for the last line:

new Mail().setSubject(subj).setTo(contact_e).setReplyTo(replyto).setText(text

).setTicketAttachments(null).send()

Example 3: Assign the Ticket to the Current Engineer
The ticket should be assigned to the engineer who executes the activity .New IT ticket

Fig. 11: ConSol*CM Process Designer - Workflow Activity Where Engineer Should Be Assigned

Fig. 12: ConSol*CM/Web Client - Ticket Passed through Activity Where Engineer Was Assigned

Script for assigning ticket to current engineer

// Get the engineer who is executing the activity:

def curr_eng = workflowApi.getCurrentEngineer()

// Assign the ticket to the current engineer

ticket.setEngineer(curr_eng)

66 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Attention:

Make sure that you always use the correct engineer object!

The current engineer is the engineer who is logged in, who is executing the current activity. You

can get the object by using the following method:

def curr_eng = workflowApi.getCurrentEngineer()

The ticket engineer is the person who is (at this point of time) the ticket owner and responsible for

the ticket. You can get the object by using the following method:

def tic_eng = ticket.getEngineer()

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 67

4.6 Workflow Components: Decision Nodes

Workflow Components: Decision Nodes

Introduction to Decision Nodes

Properties of a Decision Node

Example for a Decision Node

4.6.1 Introduction to Decision Nodes

A decision node is a node which has one or more entry points and exactly two exit points: and . Atrue false

decision node always has to have a script which has to return either or .true false

The ticket enters the decision node, then the script is executed and - depending on the result (or) -true false

the ticket leaves the node via the respective exit point.

Fig. 1: ConSol*CM Process Designer - Decision Node

4.6.2 Properties of a Decision Node

A decision node has the following properties:

name

Mandatory, the technical object name.

label

Optional, the localized name which is displayed in the Web Client GUI.

condition

Mandatory, a script which returns or has to be provided.true false

history visibility

See section .history visibility

68 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

disable auto update

See section .disable auto update

Fig. 2: ConSol*CM Process Designer - Decision Node: Properties

4.6.3 Example for a Decision Node

In the following example, the system should automatically check if the customer (main contact of the ticket)

is a customer. If yes, the ticket should be marked with the overlay (in the example a yellow star).VIP VIP

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 69

1. A custom field of type has to be defined in the customer data model to mark a customer as boolean

 (yes/no). Please refer to the , section VIP ConSol*CM Administrator Manual 6.8 Custom Field

.Administration

Fig. 3: ConSol*CM Admin-Tool - Custom Field "VIP" in Customer/Contact Data (CM Version 6.8)

Fig. 4: ConSol*CM/Web Client - Custom Field "VIP" for Customer/Contact Data

70 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

2.

3.

In the script of the decision node, it has to be checked if the customer is a (return value:) orVIP true

not (return value:).false

Example from CM version 6.8

// Get the main contact of the ticket. The unit object (can be a customer or a company) is

provided;

// here it has to be a customer, i.e. a contact:

Unit contact = ticket.getMainContact()

// Check the custom field "VIP" of the main contact. (see next image)

// If it is set to true, return true, i.e. the condition is TRUE.

// Else return false, i.e. the condition is FALSE:

if (contact.get("VIP")) {

 return true

} else {

 return false

}

When a ticket has passed automatically through the decision node and the following automatic activity

where the overlay is added, the ticket icon in the Web Client is marked with the overlay, seeVIP

following figure.

Fig. 5: ConSol*CM/Web Client - Ticket Icon with VIP Overlay

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 71

4.7 ConSol*CM Process Designer Manual - Adornments

(Triggers and ACFs)

4.7.1 Adornments (Triggers and ACFs)

The ConSol*CM workflow engine can react to several kinds of events. This is controlled by triggers. ACFs

offer dynamic forms.

Adornment type Explanation

Time Triggers Control the time which has elapsed since the ticket

has entered a scope or an activity, see section Tim

.e Triggers

Mail Triggers Control if an e-mail has been received by a ticket in

the scope, see section .Mail Triggers

Business Event Triggers Control events like the change of the engineer or

adding of a comment. See section Business Event

.Triggers

ACF Using Activity Control Forms (ACFs) you can

control the data that have to be entered by the user

in a certain step of the process, see section Activity

.Control Forms (ACFs)

72 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

4.7.2 Time Triggers

Time Triggers

Introduction to Time Triggers

Adding a Time Trigger to a Workflow

Adding a Time Trigger to a Scope

Adding a Time Trigger to an Activity

Properties of a Time Trigger

Business Logic and Initialization of a Time Trigger

Examples for Time Triggers

Scripting with Time Triggers

Example 1: Set the Due Time of a Time Trigger Depending on the Queue

Example 2: Calculate an Escalation as Warning 2 Days before Desired End Date

Introduction to Time Triggers
A workflow can contain several time triggers.

Fig. 1: ConSol*CM Process Designer - Time Trigger

A time trigger is a mechanism which reacts when a certain period of time has elapsed. This can be required,

for example, in the following situations:

Use case 1:

An engineer wants to put a ticket on hold for a defined time, because he/she knows that the customer

will not be available until then.

Use case 2:

The system should automatically control the escalation time, i.e. when a ticket has come in and has

not been taken care of, there should be an alert (this can be an overlay at the ticket icon, an e-mail to

the team lead, or other actions).

Use case 3:

A ticket has been solved and the engineer closes it. However, this should be a preliminary end and

the ticket should be closed technically after a defined period of time.

Those use cases can be implemented using time triggers.

A time trigger can be configured to use a business calendar, i.e. to take only those times into consideration

which are defined as working hours.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 73

A time trigger can be attached to ...

a scope

Then it controls all tickets which are currently in the scope.

an activity

Then it controls only the tickets which have just entered this activity.

A time trigger has to be of one of two types:

manual

with a defined period of time

Information:

You as a workflow developer have to implement everything that should happen as a consequence

when a time trigger has fired! There are no automatic actions. All the time trigger does, is to give a

signal - just like an alarm clock.time elapsed

Adding a Time Trigger to a Workflow

Adding a Time Trigger to a Scope
Grab the time trigger icon in the palette and drop it into the desired scope. It is automatically attached to the

top of the scope. You can modify the position afterwards (move it to the left or right to change the order of

triggers or just to improve the layout).

A time trigger, which has been attached to a scope, cannot be moved to another scope or activity. In case

you would like to attach a time trigger to another scope/activity, remove the one you have defined and create

a new one for the correct scope/activity.

To configure the properties of the trigger, select it in the editing panel and set the correct values in the

Properties Editor. See section .Properties of a Time Trigger

You can draw connections from the trigger to put activities or decision nodes behind it. The first step which is

executed after a time trigger always has to be an automatic activity!

Adding a Time Trigger to an Activity
Grab the time trigger icon in the palette and drop it into the desired activity. It will be attached to the corner of

the activity.

A time trigger which has been attached to an activity cannot be moved to another scope or activity. In case

you would like to attach a time to another scope/activity, remove the one you have defined and create a new

one for the correct scope/activity.

To configure the properties of the trigger, select it in the editing panel and set the correct values in the

Properties Editor. See section .Properties of a Time Trigger

74 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

1.

2.

3.

You can draw connections from the trigger to put activities or decision nodes behind it. The first step which is

executed after a time trigger always has to be an automatic activity!

Properties of a Time Trigger
A time trigger has the following properties:

name

Mandatory. The technical name of the trigger. It is set automatically but can be changed manually.

minutes/hours/days

Here you can enter the time interval after which the trigger should fire. The display mode always

refers to a 24-hours-day, i.e. when you have entered 30 hours as reaction time and you re-open the

workflow, there will be 1 day, 6 hours.

use calendar

Optional. Mark this check box when the business calendar should be taken into consideration when

the time interval is calculated.

Attention:

Please keep in mind that there are three steps which are necessary to make sure time

intervals are calculated using a business calendar:

Define a business calendar (see , section ConSol*CM Administrator Manual Business

).Calendars

Assign the correct business calendar to a queue (see AdministratorConSol*CM

, section).Manual Queue Administration

Mark the check box for each trigger which should work with theuse calendar

calendar.

Principle of the use of a business calendar:

1 day means 24 hrs of absolute time, it has nothing to do with the use of a calendar. The

calendar only plays a role when the time trigger is activated, then the 24 hrs, i.e. 86400000

milliseconds, will be taken as business calendar input (if the calendar is enabled).

Example:

When we have as trigger time 1 day = 24 hrs without calendar, the 24 hrs are calculated like

regular time, so the escalation will fire one day later at the same time.

In contrast: When we use a calendar (with, for example, 7 work hrs per work day), the 24 hrs

will be split-up according to the calendar, resulting in the firing event more than 3 days later

(24 hrs = 3 x 7 hrs + 3 hrs).

See also section .Working with Calendars and Times

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 75

repeatable

Optional. Mark this check box to make sure the trigger can fire more than once for one ticket. If a

trigger is , it is reset immediately after it has fired, i.e. the time count starts again.repeatable

Info for experts:

The script on timer start is executed again. The first firing event is initialized by the

(technical) user , all following firing events are initiated by the .admin Job Executor

script after timer

Optional. A script can be defined which is executed when the time interval which is controlled by the

trigger has elapsed, i.e. when the time trigger fires.

script on timer start

Optional. A script can be defined when the time trigger starts to measure time, i.e. when the ticket has

entered the scope/activity to which the trigger is attached.

activate manually

Optional, only for time triggers at activities. Mark this check box when the user (the engineer) should

select the time when the trigger should fire. For the user, a date-picker (web calendar) is displayed.

retry interval

The time in seconds after which the trigger execution should be executed again in case a script has

run with an error. The time can be configured in the Admin-Tool (property

).jobExecutor.timerRetryInterval.seconds

Fig. 2: ConSol*CM Process Designer - Properties of a Time Trigger

Business Logic and Initialization of a Time Trigger
The time measuring of a trigger is started (i.e. the trigger is initialized) when the ticket enters the

scope/activity. It stops (i.e. the trigger fires) when the defined period of time which has been set as fixed

value (minutes/hours/days) or the manually defined time has elapsed.

When you as a workflow developer would like to initialize a trigger using other values, this has to be done

using scripts. Here, short examples will be provided, please see section Working with Calendars and Times

for a detailed explanation of programming workflow trigger times. In those chapters, the code examples are

provided, too.

76 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Example 1:

The reaction time for a ticket should be calculated based on the priority. In the ,script on timer start

the different reaction times are used (a good way to implement this, would be to use

customer-specific system properties) and the reaction time is calculated. Then the trigger is initialized,

i.e. the time interval is set.

Example 2:

When an e-mail to a ticket has come in and after three hours, no engineer has read the e-mail and

has taken care of the ticket, an alert should be triggered. To implement this, an incoming e-mail (see

section) has an adjacent automatic activity which re-initializes a time trigger with 3Mail Triggers

hours.

A time trigger can also be deactivated. In , this would be required to prevent the time trigger fromExample 2

firing initially, because it should not be initialized before any e-mail comes in.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 77

Examples for Time Triggers
The implementations for the use cases mentioned above (see) would be:Introduction to Time Triggers

Use case 1:

Put a manual time trigger to the activity . The engineer can select the desired endPut ticket on hold

date by using the date picker in the Web Client. Usually then the ticket is led back to the active tickets.

Fig. 3: ConSol*CM Process Designer - Use Case 1: Workflow

Fig. 4: ConSol*CM Process Designer - Use Case 1: Properties Editor for Time Trigger

Fig. 5: ConSol*CM/Web Client - Use Case 1: Date Picker

78 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Use case 2:

Put a time trigger on the scope where the new tickets come in. Define the time for the trigger (this

might depend on SLAs), e.g. four hours. Put a control behind the trigger if an engineer has taken care

of the ticket or not. If not, an e-mail is sent to the team lead.

Fig. 6: CM Process Designer - Use Case 2: Workflow

Fig. 7: ConSol*CM Process Designer - Use Case 2: Properties Editor for Time Trigger

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 79

Fig. 8: ConSol*CM/Web Client - Use Case 2: Ticket List

Use case 3:

Put a time trigger to the activity and set a defined period of time for theClose ticket with solution

trigger, e.g. five days. Behind the trigger there is the end node of the process. For five days, the ticket

can still be edited, after this time, it is closed automatically.

Fig. 9: CM Process Designer - Use Case 3: Workflow

80 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 10: ConSol*CM Process Designer - Use Case 3: Properties Editor for Time Trigger

Fig. 11: ConSol*CM/Web Client - Closed Ticket

Scripting with Time Triggers
The following methods are of major importance when you work with time triggers:

TimerTrigger.setDueTime(long pDueTime in millisecs)

Sets the time when the trigger should fire. The time recording starts when the trigger enters the scope

or activity where the trigger is attached. So defines the time period in milliseconds fromsetDueTime()

the entry time to the desired firing event.

workflowApi.reinitializeTrigger()

(different method signatures)

Starts the time recording for the given trigger again, i.e. re-sets its start time.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 81

workflowApi.deactivateTimer()

(different method signatures)

Deactivates the given time trigger, i.e. the trigger will never fire until re-initialized.

(There is method Use to re-activate the trigger).no activateTimer(). workflowApi.reinitializeTrigger()

Please see also section .Working with Calendars and Times

Example 1: Set the Due Time of a Time Trigger Depending on the Queue
This script could be used as a script on timer start for a time trigger at a scope. It will initialize the trigger for

an escalation depending on the queue, i.e. if the ticket is in the queue there is lessHelpDesk _1st_Level

time until the escalation than in the queue.HelpDesk _2nd_Level

Within the scripts and s , the object timer exists as an implicit initializationscripts on timer start cript after timer

of . So you can work using triggers without any steps before. However, in an Admin-Tool scriptTimerTrigger

you will have to import the class or the respective Java package.TimerTrigger

The following script could be used in a service desk and help desk environment and placed in the following

.TimerTrigger

Fig. 12: ConSol*CM Process Designer - TimerTrigger in ServiceDesk Workflow

Example for a script on timer start

def addedEscalMillis = 0

switch (ticket.queue.name) {

 case "HelpDesk_1st_Level":

 addedEscalMillis = 12*60*60*1000L;

 break;

 case "HelpDesk_2nd_Level":

 addedEscalMillis = 24*60*60*1000L;

 break;

 case "ServiceDesk":

 addedEscalMillis = 4*60*60*1000L;

 }

trigger.setDueTime(addedEscalMillis)

82 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Attention:

For this example, it makes sense to use fixed values for the times directly in the script code. In real

life environments you might want to store escalation times and the like in system properties and

retrieve them using the . That way, an administrator can easily access and editconfigurationService

the escalation times without any manipulation of the workflow implementation.

In real life, a business calendar might also be used - please see .Example 2

In the file, you can see the time when the trigger is supposed to fire.server.log

Fig. 13: File server.log with Calculated Timer DueTime

The same principle could be applied to calculate the escalation time depending on the ticket priority, the VIP

status of a customer, or any other parameter.

Example 2: Calculate an Escalation as Warning 2 Days before Desired End Date

Calculate and set time for TimerTrigger using BusinessCalendar

def now = new Date()

def wunschTermin = ticket.get("helpdesk_standard", "date_test")

def twoWorkDays = -2*8*60*60*1000L

// calculate escalation date

def escalDate = BusinessCalendarUtil.getBusinessTime(wunschTermin, twoWorkDays,

ticket.queue.calendar)

// calculate and set due time

trigger.setDueTime(escalDate.time - now.time)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 83

4.7.3 Mail Triggers

Mail Triggers

Introduction to Mail Triggers

Mail Trigger at a Scope

Mail Trigger at an Activity

Adding a Mail Trigger to a Workflow

Adding a Mail Trigger to a Scope

Adding a Mail Trigger to an Activity

Properties of a Mail Trigger

Examples for Mail Triggers

Use Case 1: Overlay for Ticket Icon

Use Case 2: Overlay for Ticket Icon and E-Mail Confirmation by Engineer

Process Logic with Mail Triggers

Introduction to Mail Triggers
One of the core functionalities of ConSol*CM is its interaction with an e-mail infrastructure. This makes it

possible for the engineer to send manual e-mails and for the system to send automatic e-mails to customers

and to engineers, as required in the respective process step. Obviously, ConSol*CM has also to receive

e-mails. This is done by retrieving e-mails from one or more mailboxes with ConSol*CM-owned addresses.

For a detailed explanation of all interactions between the mail server and ConSol*CM, please refer to the

 and the . Here, only the workflowConSol*CM Administrator Manual Operations ManualConSol*CM

interactions are explained.

Fig. 1: ConSol*CM Process Designer - Mail Trigger

Mail Trigger at a Scope
When an e-mail is received which belongs to an existing and active (open) ticket, it might be required to

register this action and to perform specific actions subsequently. This can be achieved using one or more

mail triggers within a workflow.

84 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Attention:

Please keep in mind that (in the default configuration, i.e. without modification of the Admin-Tool

script) the , which is performed by ConSol*CM afterAppendToTicket.groovy only automatic action

having received an e-mail in a specific mailbox, is to attach this e-mail to the ticket with the

matching ticket tag in the subject, e.g. . See also Ticket (<TicketNumber>) ConSol*CM

 section .Administrator Manual Scripts of Type E-Mail

All other actions, which should be executed when an e-mail has been received, have to be

programmed in the workflow (and/or in Admin-Tool scripts)!manually

Examples for the use of mail triggers are:

When an e-mail has been received ...

the engineer of the ticket (the ticket owner) should also get an e-mail as notification.

the ticket icon (in the Web Client) should be marked by an overlay.

the ticket should be transferred to an activity where the engineer has to confirm that he/she has read

the e-mail.

the sender and the subject of the e-mail are checked and parsed. If the e-mail is a confirmation or a

denial in an approver process, the ticket is managed according to the defined rules and activities in

the workflow. That way, the approval can be performed using the e-mail only, no login of the approver

in the Web Client is required.

Mail Trigger at an Activity
When a mail trigger is attached to an activity, this activity is only executed when an e-mail is received.

Fig. 2: ConSol*CM Process Designer - Mail Trigger at Activity

Adding a Mail Trigger to a Workflow

Adding a Mail Trigger to a Scope
Grab the mail trigger icon in the palette and drop it into the desired scope. It is automatically attached to the

top of the scope. You can modify the position afterwards (move it to the left or right in order to improve the

layout). Only one mail trigger can be used per scope.

A mail trigger which has been attached to a scope cannot be moved to another scope. In case you would

like to attach a mail trigger to another scope, remove the one you have defined and create a new one for the

correct scope.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 85

You can draw connections from the trigger to put activities or decision nodes behind it. The first step which is

executed after a mail trigger always has to be an automatic activity!

Adding a Mail Trigger to an Activity
In the very rare case that you have to attach a mail trigger to an activity (we do not recommend this!), grab

the mail trigger icon in the palette and drop it into the desired activity. It will be attached to the corner of the

activity.

A mail trigger which has been attached to an activity cannot be moved to another scope or activity. In case

you would like to attach a mail trigger to another scope/activity, remove the one you have defined and create

a new one for the correct scope/activity.

Properties of a Mail Trigger
A mail trigger does not have any properties.

Examples for Mail Triggers

Use Case 1: Overlay for Ticket Icon
When an e-mail has been received for a ticket which is currently in the scope, the ticket icon in the Web

Client GUI should be marked with the overlay .mail

The mail trigger is attached to the scope and the overlay is attached to the adjacent automatic activity. The

overlay range is .activity

That way, the ticket is marked with the overlay when the e-mail has come in. As soon as an engineer has

moved the ticket to another activity, the overlay disappears.

Please note that the ticket does not leave its context. All that happens is the attachment of the overlay to the

ticket icon. Then the ticket returns to its original position in the workflow. We call this an interrupt. Please

read the section for a detailed explanation.Process Logic

Fig. 3: ConSol*CM Process Designer - Use Case 1: Scope with Mail Trigger

86 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 4: ConSol*CM/Web Client - Use Case 1: Ticket with Overlay Icon

Use Case 2: Overlay for Ticket Icon and E-Mail Confirmation by Engineer
When an e-mail has been received for a ticket which is currently in the scope, the ticket icon in the Web

Client GUI should be marked with the overlay . Additionally, the ticket should be transferred to a positionmail

where it waits until the engineer has confirmed that he/she has read the e-mail.

The mail trigger is attached to the scope and the overlay is attached to the adjacent automatic activity. The

overlay range is . That way, the ticket is marked with the overlay when the e-mail has come in.activity

Within the script which follows the mail trigger, a field is set to . In the workflow, anboolean mail_to_read true

activity is offered wherever required. It is only displayed in case the value of the Confirmed: e-mail read!

 field is . This is a stronger mechanism to remind the engineer of an incomingboolean mail_to_read true

e-mail than to use only the overlay. The engineer has to confirm the e-mail by executing the workflow activity

 explicitly. Within this workflow activity the value of the field isConfirmed: e-mail read! boolean mail_to_read

set back to . Now the ticket is ready to receive another e-mail and to notify the engineer.false

Please note that also in this case the ticket does not leave its context as a consequence of the action which

is executed after the e-mail has come in. All that happens is the attachment of the overlay to the ticket icon

and the modification of a variable. The ticket returns to its original position in the workflow. So this isboolean

also an interrupt. Please read the section for a detailed explanation.Process Logic

Fig. 5: ConSol*CM Process Designer - Use Case 2: Scope with Mail Trigger

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 87

Fig. 6: ConSol*CM Process Designer - Use Case 2: Properties of Activity "E-mail received"

Fig. 7: ConSol*CM Admin-Tool - Use Case 2: New Boolean Field to Register E-Mail

Fig. 8: ConSol*CM Process Designer - Use Case 2: Script for Activity "E-mail received"

88 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 9: ConSol*CM Process Designer - Use Case 2: Activity for E-Mail Confirmation

Fig. 10: ConSol*CM Process Designer - Use Case 2: Properties of Activity "Confirmed: e-mail read!"

Fig. 11: ConSol*CM Process Designer - Use Case 2: Precondition Script for Activity "Confirmed: e-mail

read!"

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 89

Fig. 12: ConSol*CM Process Designer - Use Case 2: Script for Activity "Confirmed: e-mail read!"

Fig. 13: ConSol*CM/Web Client - Use Case 2: Workflow Activity "Confirmed: e-mail read!"

Process Logic with Mail Triggers
When an e-mail is received, the mail trigger of the innermost possible scope fires.

Example 1:

The ticket is at position in the scope. When an e-mail comes in, the mail trigger for this(1) Ticket on hold

scope fires and, as a consequence, the ticket is moved to another scope .(2) (3)

90 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 14: ConSol*CM Process Designer - Example 1: Mail Trigger of Sub-Scope Active

Example 2:

The ticket is at position in the scope. When an e-mail comes in, the mail trigger of the(1) Work in progress

main scope fires (because the scope does not have a mail trigger). So the ticket(2) Work in progress

position is not changed .(3)

Fig. 15: ConSol*CM Process Designer - Example 2: Mail Trigger of Main Scope Active

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 91

4.7.4 Business Event Triggers

Business Event Triggers

Introduction to Business Event Triggers

Adding a Business Event Trigger to a Workflow

Adding a Business Event Trigger to a Scope

Properties of a Business Event Trigger

Business Logic of Business Event Triggers

Firing Order of Serialized Business Event Triggers

Firing Order of Business Event Triggers in Hierarchical Scopes

Case 1

Case 2

Case 3

Examples for Business Event Triggers

Use Case 1: Check Engineer Comment

Use Case 2: Re-Calculate the Ticket Priority if Impact and/or Urgency Have Been

Changed

Use Case 3: Continue Delivery Process When Shipment for the Order Has Arrived

Best Practices: Using Business Event Triggers

Introduction to Business Event Triggers
In business processes, there are often events during a regular process which have to be taken care of. For

example, it might be required to inform the team lead if someone sets a ticket priority to . Or, afterExtra High

a change of the engineer of a ticket, it might be required to see if the engineer is logged in (if he/she is not in,

the ticket has to be transferred to another engineer). There are numerous examples in business life for such

events.

Fig. 1: ConSol*CM Process Designer - Business Event Trigger

ConSol*CM can notice events using business event triggers and can react to the following types of events:

change of engineer

change of queue

change of the subject

change of the referenced engineer(s)

change of a comment

(usually adding a new comment, i.e. a text comment or an e-mail)

change of any custom field which has been defined by the system developer

(this can be e.g. the priority, a category, the content of a certain text box)

92 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

When the event occurs, the business event trigger fires.

Information:

You as a workflow developer have to implement everything that should happen as a consequence

when a business event trigger has fired! There are no automatic actions. All the business event

trigger does, is to give a signal .event has occurred

A workflow can contain as many business event triggers as required. However, you have to make sure that

in the process it is possible that all business event triggers can fire potentially (and that one does not depend

on an action which cannot ever happen, because another business event (or time) trigger has fired before).

Please see section for more information.Process Logic

Adding a Business Event Trigger to a Workflow
Business event triggers can only be attached to a scope, never to activities.

Adding a Business Event Trigger to a Scope
Grab the business event trigger icon in the palette and drop it into the desired scope. It is automatically

attached to the top of the scope. You can modify the position afterwards (move it to the left or right to change

the order of triggers or just to improve the layout).

A business event trigger which has been attached to a scope cannot be moved to another scope. In case

you would like to attach a business event trigger to another scope, remove the one you have defined and

create a new one for the correct scope.

To configure the properties of the trigger, select it in the editing panel and set the correct values in the

Properties Editor. See the following section Properties of a Business Event Trigger .

You can draw connections from the trigger to put activities or decision nodes behind it. The first step which is

executed after a business event trigger always has to be an automatic activity!

Properties of a Business Event Trigger

Fig. 2: ConSol*CM Process Designer - Properties of a Business Event Trigger

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 93

A business event trigger has the following properties:

queue

Mark this check box if the business event trigger should react to a change of the queue, i.e. the trigger

fires when the ticket is transferred to another queue. It is not relevant if this has been a manual action

or has been performed automatically by the system.

engineer

Mark this check box when the trigger should react to a change of the engineer (owner) of the ticket.

This can be a manual or an automatic action. There are three possible constellations:

The ticket did not have an engineer and an engineer is set.

The ticket has an engineer and the ticket is given to another engineer.

The ticket has an engineer and the engineer is set to (no engineer).null

subject

Mark this check box when the trigger should react to a change of the ticket subject.

comment

Mark this check box when the trigger should react to the change of a comment, i.e.:

An engineer has added a new (text) comment.

A customer has added a new (text) comment using ConSol*CM/Track access.

An e-mail has been received for the ticket.

An e-mail has been sent out from the ticket.

One or more attachment(s) has/have been added to the ticket.

referenced engineer

Mark this check box when the trigger should react to a change of additional engineers in certain

engineer roles of the ticket (ticket section). This can be one of the following situationsEngineers

(manually set or automatically by the system):

The ticket did not have any additional engineers and one or more additional engineer(s) is/are

set.

The ticket has one or more additional engineer(s) and one or more of them is/are set to ornull

changed to another name.

The ticket has one or more additional engineer(s) and all those engineers are set to (nonull

engineer).

94 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

custom field

Use the (...) button to open the pop-up window (see next figure) where you can selectEvent trigger

the custom field(s) which should be monitored. Use the and buttons to add more fields orplus minus

to reduce the number of monitored fields. As in the custom field definition (see ConSol*CM

, section), you first have to select the custom fieldAdministrator Manual Custom Field Administration

group in the left pull-down menu and then you can choose one of the custom fields of this group in the

right pull-down menu. You can select as many custom fields as you like.

Fig. 3: ConSol*CM Process Designer - Property "custom field" of a Business Event Trigger

script after event

Here you can define a script (using the ConSol*CM Script Editor) which should be executed when the

business event trigger has fired. It has to return or . When it returns , the event is reallytrue false true

fired, i.e. the automatic activity behind the business event trigger is executed. In case the script

returns , the event is blocked and the automatic activity is not executed. That way you canfalse

exactly control when the action (activity) should be performed, e.g. the trigger reacts to a change of

the priority but should only really fire when the new priority is . Then the script checks theExtra High

new priority and only when the new value is the script returns , for all other values itExtra High true

returns .false

Attention:

The is only used to control and fine-tune the firing of the business eventscript after event

trigger! Every action which should be performed when the trigger has fired has to be located

in an automatic activity behind the trigger! This guarantees a good process logic and helps

visualize the process in the Process Designer.

Business Logic of Business Event Triggers

Firing Order of Serialized Business Event Triggers
When an event has occurred which is relevant for a business event trigger, this trigger fires. Then the script

 is executed. If it returns , the following automatic activity or decision node with two followingafter event true

automatic activities is executed.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 95

If the engineer changes more than one ticket parameter and different business event triggers have been

defined for those parameters at the scope, the business event triggers fire according to their order at the

scope.

Fig. 4: ConSol*CM Process Designer - Firing Order of Business Event Triggers (1)

If one of the business event trigger actions leads the ticket to a new destination (i.e. it is no longer in the

scope where the next business event trigger would be located), the following business event trigger is not

fired. In the example in the next figure, business event trigger will not be fired, if the (3) Re-calculate priority

trigger has been fired (see in section), because the(2) Use Case 2 Examples for Business Event Triggers

subsequent actions lead the ticket to another queue.

Fig. 5: ConSol*CM Process Designer - Firing Order of Business Event Triggers (2)

Firing Order of Business Event Triggers in Hierarchical Scopes
In case there are business event triggers in hierarchical scopes, the event is by the innermostconsumed

business event trigger, i.e. by the business event trigger of the innermost scope. All events which have not

been consumed there, are further processed by the next outer scope, then the next and so on.

96 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Case 1

Fig. 6: ConSol*CM Process Designer - Hierarchical Business Event Triggers (1)

Fired events:

Events Triggers fired

Queue Inner

Queue and Engineer Inner for both

Engineer Inner

Case 2

Fig. 7: ConSol*CM Process Designer - Hierarchical Business Event Triggers (2)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 97

Fired events:

Events Triggers fired

Queue Outer

Engineer Inner

Queue and Engineer Inner and Outer

Case 3

Fig. 8: ConSol*CM Process Designer - Hierarchical Business Event Triggers (3)

Fired events:

Events Triggers fired

Queue Inner

Engineer Outer

Queue and Engineer Inner (queue) and Outer (engineer only)

98 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Examples for Business Event Triggers

Use Case 1: Check Engineer Comment
If a new comment has been added to the ticket by someone else, not by the current engineer (the ticket

owner), then an overlay should be attached to the ticket icon. That way the ticket is marked and the engineer

can see in the ticket list that there is a new comment in one of his/her tickets. The comment can be made by

another engineer who has writing access to the queue or by a customer who can add comments using

ConSol*CM/Track access. Or an e-mail might have been received.

Fig. 9: ConSol*CM Process Designer - Business Event Trigger with Following Activities

Fig. 10: ConSol*CM Process Designer - Properties of a Business Event Trigger (1)

Code of decision node script

return (workflowApi.getCurrentEngineer() == ticket.getEngineer())

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 99

Fig. 11: ConSol*CM/Web Client- Ticket Marked with New Overlay

Use Case 2: Re-Calculate the Ticket Priority if Impact and/or Urgency Have Been

Changed
This is an example from an environment. According to the standards, the ticketITIL Service Desk ITIL

priority is calculated from two values: impact and urgency. That means, in the ticket there are two fields

which can be modified by the engineer and the priority is calculated automatically from the two values. The

priority might then be displayed as ticket color or as read-only list (or both).

This principle requires a re-calculation of the priority in case at least one of the two fields (impact/urgency)

has been changed. This is achieved using a business event trigger with an adjacent activity where the

re-calculation is performed.

Fig. 12: ConSol*CM Process Designer - Business Event Trigger with Following Automatic Activity

100 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 13: ConSol*CM Process Designer - Properties of a Business Event Trigger (2)

Fig. 14: ConSol*CM Process Designer - Property "custom field" of a Business Event Trigger (2)

Code of automatic activity script Re-calculate priority

// Re-calculate priority:

String imp_value = ticket.get("service_desk_fields.impact").getName()

String urg_value = ticket.get("service_desk_fields.urgency").getName();

ScriptProvider scriptProvider =

scriptProviderService.createDatabaseProvider("calculatePriority.groovy")

//content of calculatePriority.groovy is omitted here, because it is not relevant for the

current context

Use Case 3: Continue Delivery Process When Shipment for the Order Has Arrived
This is an example taken from a shipment and delivery process: new components (e.g. hardware) are

ordered. The ticket waits in the scope . When the shipment has arrived, an Order: Waiting for shipment

engineer of another team registers this shipment and sets the tag. This change of ticketShipment received

data (from to) is registered by the business event trigger which listens to theShipment received false true

respective value (the check box). After the business event trigger has fired, the check box isboolean

checked (in the decision node), and when the value is set to , the ticket is forwarded to the next scope true

. The engineers who are responsible for the delivery now see the ticket in their view Deliver components

 and can acknowledge the delivery when they are done with Components ready for delivery All components

.delivered

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 101

Fig. 15: ConSol*CM Process Designer - Workflow for Use Case 3

Best Practices: Using Business Event Triggers
See section .Best Practices: Avoid Self-Triggering Business Event Triggers

102 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

4.7.5 Activity Control Forms (ACFs)

Activity Control Forms (ACFs)

Introduction to ACFs

Adding an ACF to a Workflow

Variant A: Starting the ACF Definition Using the Admin-Tool

Variant B: Starting the ACF Definition Using the Process Designer

Properties of an ACF

Business Logic of ACFs

ACF at Manual Activity

ACF at Manual Activity with Condition

Examples for the Use of ACFs

Use Case 1: ACF for the Dismissal of a Customer Request

Use Case 2: Fill-in Sales Information when Bid is Created

Introduction to ACFs
An is a web form which is offered to the engineer at one or more process steps.Activity Control Form (ACF)

In this way, the data input can be controlled in a very strict way.

Fig. 1: ConSol*CM Process Designer - Activity Control Form (ACF)

For example, when a help desk agent wants to dismiss a complaint, this cannot be performed without giving

a reason. In the process this is implemented using an ACF which is displayed when the engineer has clicked

on the workflow activity . A form is opened where the engineer has to select a category forDismiss complaint

the dismissal and a text box where he/she can enter a note. Or, using the example of a sales process, when

an engineer (a sales agent in this case) clicks on , a form isMake appointment with potential customer

displayed, where the budget, the size of the customer's company, and the products of interest have to be

entered.

An ACF can offer optional and mandatory fields.

Information:

We recommend to set a "..." behind the name of every activity which will automatically open an

ACF. This helps the user to distinguish between ACF-loaded activities and simple activities.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 103

Fig. 2: ConSol*CM/Web Client - Opened ACF

Adding an ACF to a Workflow

Variant A: Starting the ACF Definition Using the Admin-Tool
Before you can add an ACF to the workflow, it has to be defined using the Admin-Tool. Please refer to the

, chapter for a detailed explanation. Here, weConSol*CM Administrator Manual Custom Field Administration

assume you have already defined an ACF and want to add it to the workflow.

An ACF is always added to a manual activity. To add an ACF to the target activity, grab the ACF icon in the

palette and attach it to the activity using drag-and-drop. Then you can configure the ACF properties. In case

you add an ACF to an automatic activity, this activity is changed to type .Manual

In the Web Client, the ACF will be opened when the user clicks on the workflow activity to which the ACF is

attached in the workflow. See figure above.

Variant B: Starting the ACF Definition Using the Process Designer
You can also add an empty ACF to a workflow activity and define the name during this operation. Then an

empty ACF will be created in the Admin-Tool and you have to assign the custom fields to this ACF in a later

step.

Attention:

Do not forget to reload the Admin-Tool data! When you have defined the ACF in the Process

Designer, there is no automatic data transfer to the Admin-Tool.

104 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Properties of an ACF
These are the properties of an ACF:

name

The name of the ACF. Select the name from the drop-down menu. All ACFs which have been defined

in the Admin-Tool are available.

required fields

This opens a pop-up window (see figure below) where you can define mandatory fields. As a default,

all ACF fields are optional, i.e. when the form is opened in the Web Client, the user can enter data but

can also continue the process without doing so. For mandatory fields, the process can only be

continued when the field has been filled.

Script

Here, you can define a script which will be executed before the ACF is loaded. Usually, this kind of

script is used to set default values in ACF custom fields.

Fig. 3: ConSol*CM Process Designer - Properties of an ACF

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 105

1.

2.

Attention:

All custom fields which are part of an ACF have to be available in the target queue, i.e. the

respective custom field group (CF group) has to be assigned to the queue where the workflow is

used! There are two possibilities to achieve that:

You assign the CF group to a queue manually.

You just create the ACF and use it in a worflow. When you deploy the workflow, ConSol*CM

will automatically assign the required CF groups to the queues where the workflow is used.

For a detailed explanation of queue management, please see the ConSol*CM Administrator

.Manual

Business Logic of ACFs

ACF at Manual Activity
ACFs are only possible for manual activities. When a user selects a workflow activity in the Web Client, the

ACF script is executed (if there is a script). Then the ACF is opened in the Web Client (with optional and

mandatory fields). If fields, which are part of the ACF, are also available in the regular ticket data fields,

those fields might have been edited/filled-in by an engineer before the ACF is used. Thus those fields might

be already filled-in in the ACF. The engineer can leave them as-is (and use the ACF as control only) or can

modify the content of the fields.

If the data of the ACF should not be shown before a certain step in the process has been reached, the data

can be put into one (or more) separate custom field group(s) which are at the start of the process. Ininvisible

the step after the activity with the ACF, the custom field groups are faded in using the script of a workflow

activity. Please refer also to the section in this manual for more recommendations concerningBest Practices

the use of ACFs.

When an ACF is canceled, it returns to the scope of the last activity, because the ticket always waits behind

the last activity (and before the next).not

Fig. 4: ConSol*CM Process Designer - ACF Process Logic

Example:

106 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

1.

a.

b.

2.

a.

b.

A ticket is created and runs through the automatic activity .Set parameters

It waits behind this activity, at position in the scope . The next activities (1) New ticket Dismiss ticket ...

and (not shown here) are displayed in the Web Client.New IT ticket

The engineer selects Dismiss ticket

The script for the ACF at is executed .Dismiss ticket ... (2)

The ACF is shown in the GUI.

Variant 1:

The ACF is canceled.

The ticket goes back to .(1)

Variant 2:

The ACF is filled-in and confirmed.

The activity is executed (in case there is a script in this activity, theDismiss ticket ...

script is executed), the ticket passes through the node and continues on its way . In(3)

the example above, it is closed.

ACF at Manual Activity with Condition
In case a manual activity has a condition, the activity is only displayed if the condition script returns , i.e.true

also the ACF is only displayed if the condition script returns .true

Fig. 5: ConSol*CM Process Designer - Manual Activity with ACF and Condition

Examples for the Use of ACFs

Use Case 1: ACF for the Dismissal of a Customer Request
This example was used in the previous sections. The engineer can only dismiss a customer request when a

reason has been given. This is selected from a drop-down menu. Additionally, the engineer can add a note

in a text field.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 107

Fig. 6: ConSol*CM Admin-Tool - ACF Definition

Fig. 7: ConSol*CM Process Designer - ACF in Workflow

The Web Client GUI and the ACF properties are shown in the figures of the previous paragraphs.

Use Case 2: Fill-in Sales Information when Bid is Created
When a sales representative selects the workflow activity in the Web Client GUI, an ACF isCreate bid

opened where several fields are offered. One field is a drop-down menu and a default value is set via script.

The other fields are optional. The field has been filled-in for the ticket in previous process steps, soProduct

this field is offered with the selected value. It can either be left unchanged or it can be modified.

108 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 8: ConSol*CM Admin-Tool - ACF for Sales Workflow

Fig. 9: ConSol*CM Process Designer - ACF in Sales Workflow

Process Designer: Initializing Script for Create Bid ACF

ticket.set("sales_standard.BidInitiator","Mr. Miller")

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 109

Fig. 10: ConSol*CM/Web Client - Sales Process ACF

110 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

4.8 Jump-out and Jump-in Nodes

Jump-out and Jump-in Nodes

Introduction

Jump-out Nodes

Properties of a Jump-out Node

Jump-in Nodes

Properties of a Jump-in Node

4.8.1 Introduction

A process often consists of one or more sub-processes, e.g. in an IT help desk, there might be a first level

team who accepts and qualifies the tickets, a second level team who can solve several problems, and some

third level team with specialists. When you want to represent this process, you have to build a workflow for

each special sub-process (1st level, 2nd level, 3rd level). Then the sub-processes have to be linked to make

sure the handover of the ticket from one team to the next uses the correct way in the process.

A ticket might pass from the first level to the second level, on to a third level team, back to the second level

team with another question, back to another third level team, and then back to the first level team who

contacts the customer. So we need connections from one sub-process to the next one, i.e. nodes where a

ticket leaves the present workflow, a , and the counterpart in the following workflow, the jump-out node

. If the ticket should start at the node of the new process, no jump-in node is required.jump-in node START

In the Process Designer, jump-out and jump-in nodes are inserted into the workflow by drag-and-drop from

the palette and are linked to other workflow elements depending on the desired process.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 111

Fig. 1: ConSol*CM Process Designer - Example for Jump-out and Jump-in Nodes

4.8.2 Jump-out Nodes

A jump-out node defines a position where the ticket is to leave the (sub-)process and to enter the next

(sub-)process.

Fig. 2: ConSol*CMProcess Designer - Jump-out Node

Properties of a Jump-out Node
For a jump-out node the following properties can be defined:

name

Mandatory. Technical object name.

112 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

label

Optional. Localized name (if not set, the technical name is used) that will be displayed in the Web

Client GUI.

description

Optional. It will be displayed as mouse-over in the Web Client GUI.

sort index

Defines the order of the activities in the Web Client GUI.

jump out node type

Mandatory. Either or has to be selected. In case it is a manual node, the node isAutomatic Manual

marked with the icon in the Process Designer GUI.hand/manual

script

Optional. A script can be defined which is executed when the ticket enters the node.

target queue name

Select the queue name to which the ticket should be passed.

target jump in node

Select the jump-in node from the drop-down menu. All jump-in nodes from the workflow of the

selected queue are offered. If no jump-in node is selected, the ticket will enter the other process, i.e.

the target queue, at the node.START

Information:

When you start designing workflows you might have a problem when youchicken-and-egg

start to define jump-out and jump-in nodes, because obviously you will have to start with one

workflow when the other workflow is not yet present. We recommend to work with dummy

queues without specific jump-in node. Then add the correct target queue name and the

name of the jump-in node later.

history visibility

See section history visibility

disable auto update

See section disable auto update

Fig. 3: ConSol*CM Process Designer - Jump-out Node: Properties Editor

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 113

4.8.3 Jump-in Nodes

A jump-in node is a node which defines the position where a ticket from another process (queue) can enter a

queue with the current workflow. All jump-in nodes of a workflow are offered as target jump-in nodes when

the queue with the respective workflow has been selected as target queue for a jump-out node.

Fig. 4: ConSol*CM Process Designer - Jump-in Node

Properties of a Jump-in Node
For a jump-in node the following properties can be defined:

name

Mandatory. Technical object name.

label

Optional. Localized name (if not set, the technical name is used) that will be displayed in the Web

Client GUI.

description

Optional. It will be displayed as mouse-over in the Web Client GUI.

script

Optional. A script can be defined which is executed when the ticket enters the node.

overlay

Optional. Click into the orange space to load a standard ConSol*CM overlay or use the file explorer

(...) for an upload of another icon from the file system.

overlay range

Only displayed when overlay has been set.

Activity

The overlay is attached only as long as the ticket stands behind the activity. As soon as the

next activity is executed, the overlay is deleted from the ticket icon.

Scope

The overlay is deleted when the ticket leaves the scope.

Process

Once the overlay has been attached to the ticket icon, it stays there for the rest of the process.

Next overlay

The overlay is attached to the ticket icon as long as no new overlay appears. In that case, only

the new one is attached, the old one is deleted.

history visibility

See section .history visibility

disable auto update

See section .disable auto update

114 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 5: ConSol*CM Process Designer - Jump-in Node: Properties Editor

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 115

5 Process Logic

Process Logic

Activities

Interrupts and Exceptions

Interrupts

Exceptions

Loops (Errors in Workflows)

Process Logic of Time Triggers

Process Logic of Business Event Triggers

When you create and modify workflows it is important to know the basic principles of the workflow engine

which result in the behavior of the ticket during the process. Therefore, we will give you a short overview of

the basic rules of ConSol*CM ticket processing.

116 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

5.1 Activities

Basic rules:

Passing through a workflow, a ticket always waits the last activity, before the next!behind not

Then it looks for the next activity which can be executed/passed.

If the next possible activity is a manual activity, the ticket stays at the position behind the previous

activity (number and in the following figure).(1) (2)

If the next possible activity is an automatic activity, the activity is executed, i.e. the ticket passes

through this activity (number in the following figure).(3)

An activity can have activities as successor activities an activity can haveone or more manual or

(only) activity as successor activity.one automatic

When you save a workfow, the Process Designer automatically executes a consistency check. If there

are any inconsistencies (e.g. two automatic activities), an error message is displayed and the

workflow cannot be saved.

Fig. 1: ConSol*CM Process Designer - Process Logic 1

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 117

5.2 Interrupts and Exceptions

In the course of a process, i.e during the time when the ticket is open and engineers work on it, there might

be events which have to be taken care of. For example, when an e-mail is received by the ticket or when a

time range for an SLA has run out, it is important to register the event and to react accordingly.

There are two ways to define the reaction and behavior of the tickets. You can implement an ...

interrupt

This is a workflow architecture where the event is registered, one or more automatic activities are

executed, and the ticket returns to its previous position in the workflow.

exception

This is a workflow architecture where the event is registered and, due to the following manual or

automatic activities, the ticket leaves its previous position and is taken to a new position within the

workflow or in another workflow.

5.2.1 Interrupts

Interrupts ...

are activated by triggers.

cause a short interruption of the process to react to the trigger event.

use automatic activities (one or more subsequent automatic actions).

put the ticket back to its previous position in the workflow, i.e. back to the position where it was when

the interrupt event has fired.

are often used to mark the ticket icon with an overlay, e.g. when an e-mail has been received (see

figure below) or when an escalation time has been reached.

Fig. 2: ConSol*CM Process Designer - Two Interrupts

118 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

5.2.2 Exceptions

Exceptions ...

are activated by triggers.

move the ticket from its old position in the workflow to a new position. The latter can be in the same or

in another workflow.

cause the process to continue at the new position.

Fig. 3: ConSol*CM Process Designer - Exception

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 119

5.3 Loops (Errors in Workflows)

(Infinite) Loops will cause errors in a process. They cannot be detected by the Process Designer, so you

could deploy a workflow which contains a loop as shown in the figure below.

However, the process engine detects such loops at run-time and throws an InfiniteWorkflowLoopException

to prevent the complete system failure. You can of course see the exception in the file. In the Webserver.log

Client, an error message is displayed.

Fig. 4: ConSol*CM Process Designer - Loop in Workflow

Fig. 5: ConSol*CM/Web Client - Error Message when Loop Was Detected

Fig. 6: Console - File server.log: Error Message Caused by Workflow Loop

Business event triggers can also cause loops when the automatic activity which is attached to the trigger

changes the parameter to which the trigger reacts. See section Best Practices - Avoid Self-Triggering

.Business Event Triggers

120 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

5.4 Process Logic of Time Triggers

See section .Time Trigger Business Logic

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 121

5.5 Process Logic of Business Event Triggers

See section .Business Event Trigger Business Logic

122 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6 ConSol*CM Process Designer Manual -

Workflow Programming

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 123

1.

2.

6.1 Workflow Programming

Workflow Programming

Introduction

Additional Tools for Workflow Programming

Notes About Method Syntax

Getter Methods Can Often Be Omitted

Setter Methods Can Often Be Omitted

6.1.1 Introduction

The process logic of ConSol*CM workflows is implemented using the two basic pillars of ConSol*CM

process intelligence:

The logic which results from the order of scopes, activities, and other .workflow elements

The (which contain the). workflow scripts real intelligence

So far in this manual, we have concentrated on explaining the workflow elements which can be implemented

using the graphic-driven functionalities of the Process Designer. In the following chapter, we will provide a

deeper insight in workflow construction and will explain workflow programming.

You should have a basic knowledge of programming, because ConSol*CM scripts areJava and Groovy

written in Groovy. We will not provide an introduction to programming in general.

In ConSol*CM workflows, scripts are used in the following contexts:

As activity script for an activity.

As precondition script for an activity which has to return or .true false

As script for a decision node which has to return or .true false

As script for a business event trigger which is executed when the trigger has fired.

As script for a time trigger

which is executed when the time trigger is initialized, i.e. when the ticket enters the scope

where the time trigger is attached.

which is executed when the time trigger fires, i.e. when the defined time has elapsed.

As script for end nodes.

As script for jump-in or jump-out nodes.

As scripts for ACFs.

Please refer to the respective sections in this manual for an explanation how to insert the scripts.

6.1.2 Additional Tools for Workflow Programming

To write scripts for workflow elements, you use the Workflow Script Editor which has been explained in

section .The Script Editor

124 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

As an important tool you will also use the . Please ask your ConSol*ConSol*CM Java API documentation

sales representative or CM consultant to receive the respective file. It is a standard Java API Doc, so asJAR

an experienced Java programmer you will get along quickly.

Fig. 1: ConSol*CM Java API Doc

6.1.3 Notes About Method Syntax

As mentioned above, you have to use Groovy syntax for ConSol*CM scripts. There might be different

possibilities to express or code the same content. In the following paragraphs we will give you some hints

and provide some examples how to work with the Groovy API.

Getter Methods Can Often Be Omitted
Most Java objects possess numerous methods to retrieve values from object attributes. In ConSol*CMgetter

you can either use the complete methods, or you can use the short (convenience) form. Please seegetter

the following examples for workflow scripts.

Use case Java-like syntax (extended

version)

Groovy syntax (short version)

Get the subject of a ticket. String mysubject =

ticket.getSubject()

def mysubject = ticket.subject

Get the engineer of a ticket. Engineer myeng =

ticket.getEngineer()

def myeng = ticket.engineer

Get the main contact of a ticket. Unit mymaincontact =

ticket.getMainContact()

def mymaincontact =

ticket.mainContact

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 125

Use case Java-like syntax (extended

version)

Groovy syntax (short version)

Get the value of a certain custom

field from a ticket.

String myprio =

ticket.get("helpdesk_fields",

"prio")

def myprio =

ticket.get("helpdesk_fields.prio")

Get the unit type for the primary

contact.

Unit mycustomer =

workflowApi.getPrimaryContact()

UnitDefinition myunitdef =

customer.getDefinition()

UnitDefinitionType mydeftype =

myunitdef.getType()

def mycustomer =

workflowApi.primaryContact

def myunitdef =

customer.definition

def mydeftype =

customer.definition.type

Access to custom fields cannot be shortened, because there are no getter methods for those fields. Please

read the section for details about working with data from custom fields.Working With Data Fields

Setter Methods Can Often Be Omitted
Most Java objects possess numerous methods to set values for object attributes. In ConSol*CM yousetter

can either use the complete methods, or you can use the short (convenience) form. Please see thesetter

following examples for workflow scripts.

Use case Java-like syntax (extended

version)

Groovy syntax (short version)

Set the subject of a ticket. ticket.setSubject("asd") ticket.subject = "asd"

126 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.2 Important Classes and Objects

Important Classes and Objects

Introduction

Important Objects

Ticket

workflowAPI

Convenience Classes and Methods

Example 1: Using ConfigurationService to Retrieve System Properties

Example 2: Using EngineerService to Assign the Ticket to an Approver

Example 3: Using EnumService to Retrieve an Enum Value by Name

Example 4: Using TicketService to Retrieve all Tickets of a Certain View

Example 5: Using EngineerRoleRelationService to Send an E-Mail to All Engineers of a

Role

6.2.1 Introduction

To make ConSol*CM script programming easier, the CM Workflow API provides easy access to objects

which are frequently used. Furthermore, convenience classes and methods provide a short way to various

objects and methods.

6.2.2 Important Objects

Some objects are implicitly present in workflow scripts.

Attention:

The same objects are present in Admin-Tool scripts, i.e. within Admin-Tool scripts you willnot

have to use import statements!

Ticket
In every workflow script, the current ticket can be easily accessed by the object . It is derived from theticket

class and is implicitly present. No import and no instantiation is required.Ticket

Example:

Using the ticket object

def myId = ticket.getId()

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 127

workflowAPI
The object is also implicitly present. It provides easy access to the interface workflowApi

 which is used for numerous operations.WorkflowContextService

Examples:

Using workflowApi to send an e-mail

workflowApi.sendEmail(contact_e,subj,text,replyto,null)

Using workflowApi to assign a ticket to current engineer

def curr_eng = workflowApi.getCurrentEngineer()

ticket.setEngineer(curr_eng)

Using workflowApi to deactivate a trigger

workflowApi.deactivateTimer("defaultScope/Service_Desk/TimeTrigger1")

Using workflowAppi to display a GUI message for the engineer/user

workflowApi.addValidationError("1", "The ticket cannot be closed before a solution is provided.

Please fill-in solution and mark it with text class SOLUTION first.") }

6.2.3 Convenience Classes and Methods

The ConSol*CM API provides various convenience interfaces and methods which make access to most

objects of every-day CM programming a lot easier. Most of those convenience interfaces are part of the

package and its sub-packages. Please refer to the com.consol.cmas.common.service ConSol*CM Java API

 for details. Here, we will show you some examples which might prove useful for most CMdocumentation

programmers.

The implementing instance of the interface is always available by replacing the first letter, which is a capital

letter, in the class name by a lower case one, e.g. the object (singleton) with the interface isEngineerService

available with the object , see . engineerService Example 2

Example 1: Using ConfigurationService to Retrieve System Properties

Using ConfigurationService to retrieve number of engineer management ticket

def tic_nr =

configurationService.getValue("custom-mycompany-properties","engineer_management.ticket.nr")

// then: ... do something with the engineer management ticket, e.g. find out the name of the

next engineer a service ticket should be assigned

128 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

1.

2.

Using ConfigurationService to retrieve base URL of the system

def baseUrl = configurationService.getValue("custom-mycompany-properties","base.url.mycompany")

def url = baseUrl + "/cm-client/ticket/ticket_name/" + ticket.getName()

def itComplete = url + " " + ticket.getName()

// ... do something with the ticket url, e.g. place a link to a child ticket in a table of the

parent ticket

Example 2: Using EngineerService to Assign the Ticket to an Approver

Example with use of EngineerService

// Script does the following:

// Hand-over ticket to approver only when approver has been set in ticket as additional engineer

// Import package, because classes are not available in workflow otherwise:

import com.consol.cmas.common.model.ticket.user.function.*

// Get the name of the approver which has been written/stored in a custom field,

// namely the field with the name „CF_ApproverName“ in the custom field group

// „CF_GroupApproverData“. The value could be for example „Mr. Miller“:

def gen = ticket.get("CF_GroupApproverData.CF_ApproverName").getName()

// Get the engineer object where the name „Mr. Miller“ is set, i.e. the engineer

// object of the desired approver:

def gen_eng = engineerService.getByName(gen)

// Get the ticketFunction object which represents the ticketFunction (engineer role) „Approver“:

TicketFunction tf = ticketFunctionService.getByName("Approver")

// Add the engineer object of Mr. Miller as Approver. i.e. in the ticketFunction

// (engineer role) „Approver“ to the ticket. One of the paramaters is ticket. This

// does not have to be instantiated, because it is implicitly present in workflow scripts:

def tu = ticketUserService.addTicketUser(ticket, gen_eng, tf, "Approver")

// Assign the ticket to the engineer, i.e. set the engineer Mr. Miller also as ticket owner.

def tic2 = workflowApi.assignEngineer(ticket, gen_eng)

We have two assignments here:

Mr. Miller is set as additional engineer in the engineer role .Approver

Mr. Miller is set as ticket owner.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 129

Example 3: Using EnumService to Retrieve an Enum Value by Name

Using EnumService to retrieve an enum value by name

def enumValueMLA = enumService.getValueByName("priority", "REGULAR")

ticket.set("helpdesk_fields.prio", enumValueMLA)

Example 4: Using TicketService to Retrieve all Tickets of a Certain View

Using TicketService to find ticket of a view

List<Ticket> mylist = ticketService.getByView(new ViewCriteria(

 viewService.getByName("helpdesk_active_tickets"),

 ViewAssignmentParameter.allAssignedTickets(),

 ViewGroupParameter.allTickets(),

 viewOrderParameter.addByName(true)))

Example 5: Using EngineerRoleRelationService to Send an E-Mail to All

Engineers of a Role

Using EngineerRoleRelationService to send an e-mail to all engineers of a role

// Send e-mail to all engineers of a regular role

def mail = new Mail()

mail.setTo(engineerRoleRelationService.getEngineersWithRoles(roleService.getByName("Supervisor"

))*.email.join(","))

mail.setSubject("Ticket (${ticket.name}) -- Escalation!")

mail.setText(workflowApi.renderTemplate("Ticket escalation note to supervisor"))

mail.send()

130 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.3 Working With Data Fields

Working With Data Fields

Introduction to Data Fields

ConSol*CM Version 6.8 and Older

ConSol*CM Version 6.9 and Higher

Data Types for Data Fields

Custom Fields for Ticket Data

Most Important Methods for Access to Ticket Custom Fields

Retrieve Custom Field Values for Ticket Data

Simple Data Types

Enum Values

Lists

Lists of Simple Data Types

Lists of Structs (Tables)

Setting Custom Field Values for Ticket Data

Setting Values for Custom Fields with Simple Data Types

Setting Enum Values

Setting List Values

Setting Values in Lists of Simple Data Types

Setting Values in Lists of Structs

Fading-in and -out of Custom Field Groups

Data Fields for Customer Data

Custom Fields for Customer Data (CM Version 6.8 and Older)

Retrieving Values

Setting Values for Customer Data in CM Version 6.8 and Older

Data Object Group Fields for Customer Data (CM Version 6.9 and Higher)

Most Important Methods for Access to Customer Data Data Object Group Fields

Retrieving Values for Customer Data in CM Version 6.9 and Higher

Setting Values for Customer Data in CM Version 6.9 and Higher

Setting Values for Data Object Group Fields with Simple Data Types

Lists

Setting Values in a List of Structs for Customer Data

Convenience Methods for Access to Customer Data in CM Version 6.9 and Higher

Using Data Fields for (Invisible) Variables

6.3.1 Introduction to Data Fields

The access to data fields is an essential part of ConSol*CM programming. It is potentially required in all

scripts of the system, workflow as well as Admin-Tool scripts, no matter of which type. Here, we will set the

focus on workflow programming, but the access to data fields is basically the same in all scripts.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 131

1.

2.

ConSol*CM Version 6.8 and Older
In ConSol*CM versions 6.8 and older, all data fields are called (CFs). CFs are used to definecustom fields

the CM data model which consists of and of . The layout of the Web Client is alsoticket data customer data

defined by the help of CFs using special annotations (e.g.).position

Examples for custom fields for tickets are:

priority of the ticket

escalation date due to an SLA

printer model

contract number

Examples for custom fields for customer data are:

customer name

zip code

phone number

e-mail address

For a detailed introduction to the work with custom fields for ticket data, please refer to the ConSol*CM

, section .Administrator Manual 6.8 Custom Field Administration

Rules for work with custom fields CM 6.8 and older:

When you work with custom fields, there are two main rules you have to keep in mind:

Custom fields are always managed and referenced in custom field groups, e.g. when you

want to retrieve the value of a CF, you use <CF GroupName>.<CF FieldName>

You always use the technical unique name to reference a CF or a CF group, not the

localized value.

ConSol*CM Version 6.9 and Higher
Starting with ConSol*CM version 6.9.0, there are two types of data fields:

custom fields

Used to define ticket data, managed in custom field groups, as known from previous CM versions.

data object group fields

Used to define customer data as part of the , the new customer data model. Managed inFlexCDM

data object groups.

The work with custom fields of the new (version 6.9 and higher) customer data model (FlexCDM) is

explained in detail in the and in the Administrator Manual - Customer Data Model 6.9: FlexCDMConSol*CM

, section .ConSol*CM Administrator Manual (Version 6.9) The CM Customer Data Model: FlexCDM

132 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

1.

2.

3.

Rules for work with custom fields CM 6.9 and higher:

When you work with custom fields and data object group fields, there are three main rules you

have to keep in mind:

Custom fields are always managed and referenced in , e.g. when youcustom field groups

want to retrieve the value of a CF, you use <CF GroupName>.<CF FieldName>

Data object group fields are always managed and referenced in , e.g.data object groups

when you want to retrieve the value of a data object group field, you use <Data Object

GroupName>:<Data Object Group FieldName>

You always use the technical unique name to reference a data object group field or a data

object group, not the localized value.

6.3.2 Data Types for Data Fields

A data field is always of a certain data type. As for any variable in programming, it depends on the data type

how you have to handle the value of the field, e.g. a field cannot be used for calculating numbers, an string

 field needs a specific access method.enum

The following data types are available in ConSol*CM:

boolean

Values: or . Depending on the annotation , the value is displayed as a checktrue false boolean-type

box, radio buttons, or a drop-down list.

date

Format and accuracy can be set by annotations.

enum

For sorted lists. The engineer can choose one of the enum values on the Web Client. Enums and

values have to be created previously within the in the Admin-Tool (see Enum Administration

).Administrator ManualConSol*CM

list

A data field of this type is the basis for a (one column) or a (multiple columns) of input fieldslist table

in the Web Client. A table contains lines, each of data type (see below). Each line (struct)struct

contains individual data fields. A simple list consists of a field which contains the custom fields.list

struct

A data field of this type defines a data structure (line of a table) which groups one or multiple field(s).

number

For integer values.

fixed point number

For numbers with a fractional part, e.g. currencies. You have to enter the total number of digits (

) and the number of digits that fall to the right of the decimal point ().Precision Scale

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 133

string

For up to 4000 alphanumeric characters.

long string

For large objects, unrestricted length.

short string

For up to 255 alphanumeric characters.

contact data reference (up to version 6.8)

Special data type used internally for referencing the contacts associated with a ticket. Additionally the

 (customer or company) has to be selected in the field below.contact data type

MLA field

This data type is used for custom fields that contain hierarchical lists with a tree structure called MLA

(Multi Level Attributes). The name of the custom field will be the name of the new MLA that has to be

defined within the MLA Administration. The group of the custom field has to be referenced when the

MLA is created.

6.3.3 Custom Fields for Ticket Data

In the Admin-Tool, the custom fields for ticket data are defined in the section,Custom Field Administration

file card .Ticket data

Fig. 1: ConSol*CM Admin-Tool: Custom Field Administration for Ticket Data

Most Important Methods for Access to Ticket Custom Fields
Three methods are of major importance for programming CF access in CM scripts. They all are methods of

the class :Ticket

134 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Ticket.get()

For retrieving data from a CF.

Ticket.set()

For setting data in an already existing CF.

Ticket.add()

For calculating with a value within a CF, i.e. to add a certain time range to a field.date

For adding a new line in list fields (simple lists and tables).

Another method might be used when a field should be emptied, i.e. when its value should be set to :null

Ticket.remove()

Sets the value of the field to .null

Retrieve Custom Field Values for Ticket Data
To retrieve data from a custom field in a script, you have to reference it by using the technical names of the

custom field group and of the custom field.The method which has to be used can vary depending on the data

type of the CF.

Simple Data Types
The following examples refer to the custom fields in the figure above.The method which should to be used

(because it is the most convenient way) is:

ticket.get("<Group_name>.<CF_name>")

Attention:

Please keep in mind that the method for attributes will return the attribute (an object) and notgetter

the value of the object!

For example:

ticket.getField("helpdesk_standard","reaction_time") will return an AbstractField.

When you want to work with the value of the field use:

ticket.get("helpdesk_standard", "reaction_time")def myvalue =

Or:

ticket.getField("helpdesk_standard", "reaction_time");def myfield =

def myvalue = myfield.getValue();

Best:

(the version we recommend for standard use)

 ticket.get("helpdesk_standard.reaction_time")def myvalue =

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 135

Retrieve value of boolean CF

def fedb = ticket.get("helpdesk_standard.feedback")

// will return TRUE or FALSE or NULL because it is a BOOLEAN field

A precondition script of a workflow activity could look like the following code:

Precondition script where boolean value is checked

boolean vip_info = ticket.get("am_fields","vip");

if(vip_info == true){

 return true;

}

else {

 return false;

}

Or shorter:

Precondition script where boolean value is checked, short version

return ticket.get("am_fields.vip")

Enum Values
An enum (ordered list) field is a field where the value is one of various list values. For example, a list with

priorities is the basis for an enum field. To retrieve the value of an enum field, you can use the same syntax

as for simple data types. The method provides the enum list value, the method provides the get getName()

 attribute with the name of the value.string

Retrieving an enum value for a CF

def prio = ticket.get("helpdesk_standard.priority")

println "Priority is now " + prio.getName()

Lists

Lists of Simple Data Types
A list of simple data types consists of a list (= array) which has a value of a simple data type in each line, a

 in our example.The CF of type has to have the parameter which points to the list.date date Belongs to

136 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 2: ConSol*CM Admin-Tool - CFs for a List of Date Fields

Fig. 3: ConSol*CM/Web Client - List of Date Fields in a Ticket (Edit Mode)

For access to each CF within a list use the following lines of code:date

Displaying the content of a list of date objects

def convs = ticket.get("conversation_data.conversation_list").each() { conv ->

 println "NEXT DATE is :" + conv

 println "CLASS of NEXT DATE is " + conv.getClass()

}

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 137

Fig. 4: Log File - Output for Script

To access a certain line, you can use the following syntax:

Retrieve a certain value from a list of simple data types

def mydate = ticket.get("conversation_data.conversation_list[1]")

Lists of Structs (Tables)
The data construct is the technical basis for a table structure in the Web Client. The list is thelist of structs

parent object which contains lines. Each line is an instance of a struct. Each line (struct) contains as many

custom fields (table columns) as required.

Fig. 5: List of Structs - Logical Principle

Technically spoken, the list is an array which contains a map (= key:value pairs) in each field.

Fig. 6: List of Structs - Technical Principle

To retrieve the data from a list of structs you can work with an iteration over the lines (= structs). In the

following example (from an order system, not displayed in the figure above) we work with a table where ...

the CF represents the list.orders_list

the CF is located within the CF group orders_list order_data.

the iterator represents the struct.str

138 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

the struct has three fields:

orders_hardware

which represents the article that should be ordered ().enum

orders_contact

which represents the contact person ().string

orders_number

which represents the number of articles that should be ordered ().integer

Fig. 7: ConSol*CM Admin-Tool - Custom Fields for List

Fig. 8: ConSol*CM/Web Client - Ticket with Filled-in Table

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 139

Retrieve data from a list of structs

def structs = ticket.get("order_data.orders_list").each() { str ->

 println("CLASS of LINE is " + str.getClass())

 println("FIELD VALUE HARDWARE is " + str.orders_hardware.getName())

 println("CLASS of FIELD VALUE HARDWARE is " + str.orders_hardware.getName().getClass())

 println("FIELD VALUE CONTACTis " + str.orders_contact)

 println("CLASS of FIELD VALUE CONTACT is " + str.orders_contact.getClass())

 println("FIELD VALUE NUMBER is " + str.orders_number)

 println("CLASS of FIELD VALUE NUMBER is " + str.orders_number.getClass())

}

Fig. 9: Log File - Script Output

Setting Custom Field Values for Ticket Data
To set values for ticket CFs, you follow the same principle as for getting data: use the CF group name and

the technical name of the CF as a reference. Of course, additionally, the new value is required. And of

course it has to be of the correct data type.

 ticket.set("<Group_name>.<CF_name>", <value>)

Setting Values for Custom Fields with Simple Data Types

Set a CF value for a date CF

ticket.set("fields.reaction_time", new Date());

When you work with or fields, you can even calculate with the CF values in a very comfortablenumber date

way, see following example.

Calculate with value of date CF

//add 24 hours (in millis) to current field value

 ticket.add("fields.deadline", 24*60*60*1000);

Setting a value to (i.e. emptying the field) is the same as removing the value:null

140 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Setting a CF value to null

ticket.set("fields.numberOfEmployees", null)

Or shorter:

Setting a CF value to null via removing the value

ticket.remove("fields.numberOfEmployees")

Setting Enum Values
To set an value use the following syntax. Of course, the new value has to be present in the ordered listenum

(enum) which is referenced by the CF.

ticket.set("Group_name.CF_name",<technical name of value>)

Setting an enum value

ticket.set("fields.priority", "URGENT");

Setting List Values

Setting Values in Lists of Simple Data Types
When you want to add a line, you can simply use the method:add

Adding a new line in a list of strings

ticket.add("fields.tags", "my new String")

When you want to refer to a certain value to set a new value for it, you have to use the syntax for an array:

Setting a value in a list of strings

ticket.set("fields.tags[last]", "consol cm6")

Setting Values in Lists of Structs
Working with , you always have to work with the key of the value you would like to add or set. structs When

you want to a new line, you have to build a new struct as new line. The method can be used oneadd set

after another for each new field.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 141

Adding a new line in a list of structs

ticket.add("order_data.orders_list", new Struct().set("tA_Id",

id).set("orders_hardware",mynewhardware_model).set("orders_contact",

thenewcontactname).set("orders_number",thenewnumber)

Fading-in and -out of Custom Field Groups
A custom field group (CF group) can be faded-in (made visible) and faded-out (made invisible) using a

 method. This works for CF groups which are displayed in the main ticket data section as well asworkflowApi

for CF groups which are displayed in the tabbed section.

A typical use case is a CF group which is invisible at first (CF group annotation =) and isgroup-visibility false

faded-in when the engineer needs to work with the data in the process. For example, a CF group which

contains reasons for the dismissal of a request is only displayed (faded-in) when the engineer has used the

workflow activity . This prevents an information overload of the ticket.Dismiss ticket ...

Fade-in a CF group

workflowApi.setGroupProperty(„CF_Group_Dismissal",GroupPropertyType.VISIBLE,"true"

To fade-out some CF groups, e.g. when the ticket has been qualified and some of the CF groups will no

longer be required in the process, use code according to the following example:

Fade-out a CF group

workflowApi.setGroupProperty("CF_Group_HardwareInfo",GroupPropertyType.VISIBLE,"false")

workflowApi.setGroupProperty("CF_Group_SoftwareInfo",GroupPropertyType.VISIBLE,"false")

6.3.4 Data Fields for Customer Data

Custom Fields for Customer Data (CM Version 6.8 and Older)
In CM version 6.8 and older, customer data are defined in the Admin-Tool, section Custom Field

, tab .Administration Customer data

142 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 10: ConSol*CM Admin-Tool - Custom Field Administration for Customer Data (CM Version 6.8 and

Older)

The customer data can comprise one level (only a contact level) or two levels (contact = customer level and

company level). I.e. you have to deal with two objects maximum. The names of the objects depend on the

names which have been assigned to them in the Admin-Tool. In the example (see figure above), the contact

(= customer) object is named and the company object is named .customer company

Retrieving Values
Each object within the customer data represents a (i.e. an instance of the class). In scripts, the unitunit Unit

(customer or company) has to be retrieved, before you can work with it. If the customer data model contains

two levels (contact = customer and company), you will see a CF in the contact object which has the data

type . This is the link between the contact and company object.contact data reference

Unit contact = ticket.getMainContact()

Unit company = contact.get('<contact data reference_field>')

For all other CFs, the access to data is based on the same principle as for ticket data.

Type t = contact.get('<CF_name>')

For example:

Retrieving customer data from a CF

def fn = customer.get("firstname")

Setting Values for Customer Data in CM Version 6.8 and Older

company.set('<CF_name>', <new value>)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 143

Setting values for a company in a list of structs

ticket.set("person_data.responsibleConsultants", new Struct[]{

 new Struct().set("lastName", "Miller").set("email", "miller@consol.com"),

 new Struct().set("lastName", "Smith").set("email", "smith@consol.com"),

 new Struct().set("lastName", "Burger").set("email", "burger@consol.com")

 });

Data Object Group Fields for Customer Data (CM Version 6.9 and

Higher)
In CM version 6.9 and higher, the customer data object groups are part of the new customer data model (

) and are defined in the Admin-Tool, section , file card .FlexCDM User attributes Customer data model

Fig. 11: ConSol*CM Admin-Tool - Custom Field Administration for Customer Data (CM Version 6.9 and

Higher)

The fields, which were called custom fields in the customer data model of previous versions, are now called

. However, the principle you use to retrieve and set values for the data fields isdata object group fields

principally the same as in CM version 6.8 and older.

Most Important Methods for Access to Customer Data Data Object Group Fields
Three methods are of major importance for programming access to data object group fields (DOGF) in CM

scripts. They all are methods of the class :Unit

Unit.get()

For retrieving data from a DOGF.

144 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Unit.set()

For setting data in an already existing DOGF.

Unit.add()

For calculating with a value within a DOGF, i.e. to add a certain time range to a field.date

For adding a new line in list fields (simple lists and tables).

Another method might be used when a field should be emptied, i.e. when its value should be set to :null

Unit.remove()

Sets the value of the field to .null

Retrieving Values for Customer Data in CM Version 6.9 and Higher
Because the name of a might appear in more than one , the namedata object group field data object group

of the data object group has to be provided when accessing the customer data. For example, in the

customer data model shown in the figure above, the data object groups and ResellerCompanyData

 could have a data object group field named . Therefore, it is important to mentionDirCustCompanyData city

group name and field name.

Please use the following syntax:

unit.get("group1:name")

For example:

Retrieving a field value for a company

def mycity = company.get("ResellerCompanyData:city")

There are various objects and methods to work with data on different levels of the FlexCDM. Please see the

following example where several common objects and methods have been applied. It is an Admin-Tool script

which is accessed from a workflow activity. The only purpose is to display some data of the ticket's main

customer. The following figure shows the Java objects used in the script and the ConSol*CM objects in the

Admin-Tool which are referenced.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 145

Fig. 12: ConSol*CM Customer Objects in Script and Admin-Tool

Information:

Please keep in mind that you might also use the short notation like for getterunit.definition.type

methods like .unit.getDefinition().getType()

146 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Admin-Tool script for displaying customer data

import com.consol.cmas.common.model.ticket.Ticket

import com.consol.cmas.common.model.customfield.meta.UnitDefinitionType

def ticket = workflowApi.getTicket()

def mcont = ticket.getMainContact()

println "CustomerGroup of main contact is now " + mcont.getCustomerGroup().getName()

println "Customer definition of main contact is now " + mcont.getCustomerDefinition().getName()

println "UnitDefinition of main contact is now " + mcont.getDefinition().getName()

def custmod = mcont.getCustomerDefinition().getName()

// println "CUSTMOD is now " + custmod

def cityfield

switch (custmod) {

 case "BasicModel" : cityfield = "company:city";

 break;

 case "DirectCustomerModel" : cityfield = "DirCustCompanyData:dir_cust_company_city";

 break;

 case "ResellerModel": cityfield = "ResellerCompanyData:city";

 break;

}

println "CITYFIELD is now " + cityfield

def utype1 = mcont.getDefinition().getType()

def utype2 = mcont.definition.type

println "UTYPE1 is now " + utype1

println "UTYPE2 is now " + utype2

def company = mcont

if (utype2 == UnitDefinitionType.CONTACT) {

 company = mcont.get("company()")

}

def mycity = company.get(cityfield)

println " CITY is now " + mycity

For the following data set the log file output is shown below. The model of the figure above is used.Reseller

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 147

Fig. 13: ConSol*CM/Web Client - Customer Data Set

Fig. 14: Log File - Script Output

Retrieving a value from a list of structs using index notation

String firstName = company.get("responsibleConsultants[0].firstName");

Setting Values for Customer Data in CM Version 6.9 and Higher

Setting Values for Data Object Group Fields with Simple Data Types
The and methods work as described for ticket custom fields. For example:set add

Set and add values for a data object group field of type integer

//set number field

company.set("numberOfEmployees", 1);

//add 1 to field value, afterwards the value of the field is 2

company.add("numberOfEmployees", 1);

148 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Lists
Setting Values in a List of Structs for Customer Data

Creating a new list of structs, version 2

company.set("responsibleConsultants", [

 new Struct().set("lastName", "Miller").set("email", "miller@consol.com"),

 new Struct().set("lastName", "Smith").set("email", "smith@consol.com"),

 new Struct().set("lastName", "Burger").set("email", "burger@consol.com")

]);

Adding a new line in a list of structs for company data

company.add("responsibleConsultants", new Struct().set("lastName", " Nowitzki ").set("email",

"dnowitzki@consol.us"));

Setting a value in a list of structs using index notation

company.set("responsibleConsultants[0].firstName", "John");

Removing a struct (= line) from a list of structs (= table)

company.set("responsibleConsultants[last]", null);

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 149

Convenience Methods for Access to Customer Data in CM Version 6.9

and Higher

Convenience methods for access to customer data

Unit mainContact = ticket.getMainContact();

// "company" extension returns company for contact

Unit company = mainContact.get("company()");

// it is also possible to set company using "company" extension

mainContact.set("company()", company);

// "contacts" extension returns list of contacts for company

List contacts = company.get("contacts()");

// "tickets" extension returns list of tickets for contact or company

List tickets = company.get("tickets()");

tickets = mainContact.get("tickets()");

// extensions can be chained

Integer count = contact.get("company().contacts()[0].tickets()[count]");

// parenthesescan be omitted, but it is not recommended (possible collision with name of group

or field)

count = contact.get("company.contacts[0].tickets[count]"); // here "company" is not extension

but name of field

6.3.5 Using Data Fields for (Invisible) Variables

Sometimes it is necessary to work with variables which are not used as values for GUI-visible custom fields

or data object group fields, but which are only used as containers for internal programming variables.

Those of you who know how to program ConSol*CM5 workflows know those containers as .global variables

In ConSol*CM6, you can achieve the same goal by creating regular custom fields (for ticket data) or data

object group fields (for customer data) with the required data type and setting the field to . This hasinvisible

to be done by using the annotation . You can even let the variable be visible during thevisibility = none

development of the process and control the field's value. Then you can set it to invisible when the system is

handed-over to QA and users.

150 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.4 Sending E-Mails

Sending E-Mails

Introduction to Sending E-Mails

Important Methods

ConSol*CM Version 6.8 and Older

ConSol*CM Version 6.9 and Higher

Examples

Sending an Automatic Acknowledgment of Receipt to the Customer When He/She Has

Opened a Ticket

ConSol*CM Version 6.8 and Older

ConSol*CM Version 6.9 and Higher

Sending an E-Mail to the Engineer When a Certain Escalation Level Has Been Reached

ConSol*CM Version 6.8 and Older

ConSol*CM Version 6.9 and Higher

Sending an E-Mail to a Customer Integrating the Queue-Specific Mail

Script

Sending an E-Mail to All Contacts of the Ticket

Sending an E-Mail to Each Contact in a List of All Contacts of the Ticket

6.4.1 Introduction to Sending E-Mails

The capability of receiving and sending e-mails is a core feature of ConSol*CM. Please read the detailed

introduction in the for information.ConSol*CM Administrator Manual

In this section we will describe how you can write scripts to send e-mails from the workflow. This is very

useful for use cases like the following:

You want to send an automatic acknowledgment of receipt to the customer when he/she has opened

a ticket.

You want to inform the engineer and his supervisor when the highest escalation level has been

reached.

You want to inform the customer that a problem has been solved (and how).

Usually, you do not write the text of the e-mail into the script but you work with e-mail templates. So please

read the detailed introduction to the in the ConSol*CM Template Designer ConSol*CM Administrator Manual

first.

6.4.2 Important Methods

ConSol*CM Version 6.8 and Older
Use workflowApi.sendEmail().

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 151

ConSol*CM Version 6.9 and Higher
Use an object of class .Mail

Here you can define all required parameters for an e-mail and you can configure the object to use theMail

queue-specific e-mail default script. This is a script which processes the e-mail before it leaves the CM

system. This kind of script can be assigned to a queue (, see section inE-Mail script Queue Administration

the). To use such a script can prove helpful, for example when you wantConSol*CM Administrator Manual

to set a address which is not the standard address (stored in a system property).REPLY TO REPLY TO

6.4.3 Examples

Sending an Automatic Acknowledgment of Receipt to the Customer

When He/She Has Opened a Ticket

ConSol*CM Version 6.8 and Older
This script might be placed in one of the first activities of the workflow.

// fetch main contact of the ticket

def contact = ticket.getMainContact()

// fetch e-mail address = Custom Field of contact

def contact_e = contact.get("email")

// build e-mail text using a template which is stored in the Template Designer

def text = workflowApi.renderTemplate("Acknowledgement_of_receipt")

// fetch the REPLY TO address which is stored in a system property

def replyto = configurationService.getValue("cmweb-server-adapter","mail.reply.to")

// set the subject of the e-mail, the ticket number with the correct Regular Expression

// has to be set for correct recognition of incoming e-mails for the ticket

def subj = "Your case has been registered as Ticket (" + ticket.getId() + ")"

// send out the e-mail

workflowApi.sendEmail(contact_e,subj,text,replyto,null)

ConSol*CM Version 6.9 and Higher
This script might be placed in one of the first activities of the workflow.

152 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

// create new mail object

def mail = new Mail()

// fetch main contact of the ticket

def maincontact = ticket.getMainContact()

// fetch e-mail address of the main contact. The data object group field has to be addressed

using data object group name:data object group field name

def toaddress = maincontact.get("MyCustomerDataObjectGroup:email")

// put the e-mail TO address into the Mail object

mail.setTo(toaddress)

// fetch the REPLY TO address, this is stored in a system property

def replyaddress = configurationService.getValue("cmweb-server-adapter","mail.reply.to")

// put the e-mail REPLY TO address into the Mail object

mail.setReplyTo(replyaddress)

// build e-mail text using a template which is stored in the Template Designer

def text = workflowApi.renderTemplate("Acknowledgement_of_receipt")

// put the e-mail text into the Mail object

mail.setText(text)

// create the subject of the e-mail, the ticket number with the correct Regular Expression has

to be set for correct recognition of incoming e-mails for the ticket

def ticketname = ticket.getName()

def subject = "Your case has been registered as Ticket (" + ticketname + ")"

// put the subject into the Mail object

mail.setSubject(subject)

// send out the e-mail

mail.send()

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 153

Sending an E-Mail to the Engineer When a Certain Escalation Level Has

Been Reached
This script might be placed in an automatic activity which is connected to a time trigger. The time trigger

measures the escalation interval. When the deadline has been reached, the trigger fires and the ticket enters

the automatic activity.

ConSol*CM Version 6.8 and Older

// fetch current engineer of the ticket

def eng = ticket.getEngineer()

// fetch e-mail address = Standard Data Field of engineer, check if there is a current engineer

to avoid NullPointerException

def eng_email = eng?.getEmail()

// build e-mail text using a template which is stored in the Template Designer

def text = workflowApi.renderTemplate("ESCALATION_Mail")

// fetch the REPLY TO address which is stored in a system property

def replyto = configurationService.getValue("cmweb-server-adapter","mail.reply.to")

// set the subject of the e-mail, the ticket number with the correct Regular Expression has to

be set for correct recognition of incoming e-mails for the ticket

def subj = "ESCALATION Level 3 REACHED! Ticket (" + ticket.getId() + ")"

// send out the e-mail

workflowApi.sendEmail(eng_email,subj,text,replyto,null)

154 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

ConSol*CM Version 6.9 and Higher

// create new mail object

def mail = new Mail()

// fetch current engineer of the ticket and set it as e-mail receiver

if (ticket.engineer){

 mail.setTargetEngineer(ticket.engineer)

 // fetch the REPLY TO address, this is stored in a system property

 def replyaddress = configurationService.getValue("cmweb-server-adapter","mail.reply.to")

 // put the e-mail REPLY TO address into the Mail object

 mail.setReplyTo(replyaddress)

 // build e-mail text using a template which is stored in the Template Designer

 def text = workflowApi.renderTemplate("ESCALATION_Mail")

 // put the e-mail text into the Mail object

 mail.setText(text)

 // create the subject of the e-mail, the ticket number with the correct Regular Expression

has to be set for correct recognition of incoming e-mails for the ticket

 def ticketname = ticket.getName()

 def subject = "ESCALATION Level 3 REACHED! Ticket (" + ticket.getId() + ")"

 // put the subject into the Mail object

 mail.setSubject(subject)

 // send out the e-mail

 mail.send()

}

Sending an E-Mail to a Customer Integrating the Queue-Specific Mail Script
This is the same script as shown in the example above, but the queue-specific mail script will be used. For a

detailed explanation of this type of script, refer to the , section ConSol*CM Administrator Manual Admin-Tool

.Scripts

As an effect, the outgoing e-mail will pass through the script before it leaves the CM system. E-mail

parameters, like , , or can be changed.CC BCC REPLY TO

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 155

// create new mail object

def mail = new Mail()

// fetch main contact of the ticket

def maincontact = ticket.getMainContact()

// fetch e-mail address of the main contact. The data object group field has to be addressed

using data object group name:data object group field name

def toaddress = maincontact.get("MyCustomerDataObjectGroup:email")

// put the e-mail TO address into the Mail object

mail.setTo(toaddress)

// fetch the REPLY TO address, this is stored in a system property

def replyaddress = configurationService.getValue("cmweb-server-adapter","mail.reply.to")

// put the e-mail REPLY TO address into the Mail object

mail.setReplyTo(replyaddress)

// build e-mail text using a template which is stored in the Template Designer

def text = workflowApi.renderTemplate("Acknowledgement_of_receipt")

// put the e-mail text into the Mail object

mail.setText(text)

// create the subject of the e-mail, the ticket number with the correct Regular Expression has

to be set for correct recognition of incoming e-mails for the ticket

def ticketname = ticket.getName()

def subject = "Your case has been registered as Ticket (" + ticketname + ")"

// put the subject into the Mail object

mail.setSubject(subject)

// Mail should use the e-mail script which is configured for the queue

mail.useDefaultScript()

// send out the e-mail

mail.send()

Sending an E-Mail to All Contacts of the Ticket
This will send one e-mail with all customers (that have an e-mail address) as receiver. Please note that this

is a simple example which demonstrates the use of a list. The address is not set, so answers toREPLY TO

the e-mail would not be appended to the ticket.

def custEmails = workflowApi.getContactList()*.get("email").findAll{it != null}.join(",")

workflowApi.sendEmail(custEmails, "Confirmation", "Good afternoon, we received your request!",

null, null)

156 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Sending an E-Mail to Each Contact in a List of All Contacts of the Ticket
This will send one e-mail to every single customer (that has an e-mail address). Please note that this is a

simple example which demonstrates the use of a list. The address is not set, so answers to theREPLY TO

e-mail would not be appended to the ticket.

workflowApi.getContactList().each {

 def custEmail = it.get("email")

 if (custEmail) workflowApi.sendEmail(custEmail, "Confirmation", "Good afternoon, we received

your request!", null, null)

}

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 157

6.5 Working with Path Information

Working with Path Information

Introduction

Retrieve Path Information for a Workflow Element

Examples for the Use of Path Information

Example 1: Deactivate and/or Re-Initialize a Time Trigger

6.5.1 Introduction

Like a file in a file system on a computer, every element of a workflow can be addressed using the path of

this element. This might be required when you want to work with the element within a workflow script. A path

represents the hierarchical structure of the workflow.

Fig. 1: ConSol*CM Process Designer - Path Information (Example: Activities and Scopes)

6.5.2 Retrieve Path Information for a Workflow Element

You can copy the path of an element by clicking on the element with the right mouse tab and selecting Copy

.adornment's path to clipboard

158 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 2: ConSol*CM Process Designer - Copying the Path of a Workflow Element

6.5.3 Examples for the Use of Path Information

Example 1: Deactivate and/or Re-Initialize a Time Trigger
A typical case for the use of path information is the re-initialization of a time trigger, e.g. if you want to

measure the time after an e-mail has been received and make sure that the e-mail is taken care of within a

period of 10 minutes maximum. That means you have to use a time trigger over and over again and

re-initialize it after each e-mail which has been received by the ticket.

When the ticket is created, the time trigger has to be deactivated. The following code would be used:

Deactivate a time trigger

workflowApi.deactivateTimer("defaultScope/Service_Desk/TimeTrigger1")

When an e-mail has been received, the trigger has to be re-initialized. The following code would be used:

Re-initialize time trigger

workflowApi.reinitializeTrigger("defaultScope/Service_Desk/TimeTrigger1")

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 159

6.6 Working with Calendars and Times

Working with Calendars and Times

Introduction

Calculating with Dates and Times without a CM Business Calendar

Example: Setting a Time Trigger Time with Dynamic Time Range

Calculating with Dates and Times Using a CM Business Calendar

Example: Using a Time Trigger with a Business Calendar to Calculate Escalation Time

(CM 6.9)

6.6.1 Introduction

Calculating dates and times plays an important role in ConSol*CM workflow programming. For a time trigger

(see section), the exact point in time when it is supposed to fire can be set via script. ThisTime Triggers

adds various possibilities in controlling escalation times, reminders for engineers, and other active

components of a ConSol*CM process. Examples for potential calculations with dates and/or times are:

escalation dates with time triggers

date fields, like a desired (or required) deadline

When you calculate a date and/or time, you have to decide if a business calendar should be used or not. A

business calendar defines working hours for a process. It is defined using the Admin-Tool and assigned to

one or more queues.

For example, the service desk team might have working hours from 8 to 6 for 6 days a week, whereas the

administration team works on a 9-to-5 basis, 5 days a week. Using a CM business calendar makes sure that

an escalation will not be set during spare time and that non-working hours are not included into the

calculation of the elapsed escalation time. Please refer to the for aConSol*CM Administrator Manual

detailed introduction about business calendars.

On the other hand, there are examples, when a business calendar is not required but the time based onpure

the regular calendar should be used. For example, when it is required to get back to a customer three weeks

after the initial contact. The following paragraphs will show you examples for both use cases.

160 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

How the time of a time trigger with calendar is calculated:

1 day means 24 hrs of absolute time, it has nothing to do with the use of a calendar. The calendar

only plays a role when the time trigger is activated, then the 24 hrs, i.e 86400000 milliseconds, will

be taken as business calendar input (if the calendar is enabled).

Example:

When we have as trigger time 1 day = 24 hrs without calendar, the 24 hrs are calculated like

regular time, so the escalation will fire one day later at the same time.

In contrast: When we use a calendar (with, for example, 7 work hrs per work day), the 24 hrs will

be split-up according to the calendar, resulting in the firing event more than 3 days later (24 hrs = 3

x 7 hrs + 3 hrs).

6.6.2 Calculating with Dates and Times without a CM Business

Calendar

Example: Setting a Time Trigger Time with Dynamic Time Range
Depending on the priority, the time trigger for an escalation is configured:

Setting time for a time trigger

// prio is 'medium'

def escalationTime =

configurationService.getValue("custom-mycompany-properties","escalation.time.medium")

def escalationTimeMillisecs = escalationTime * 60 * 1000L

trigger.setDueTime(escalationTimeMillisecs)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 161

6.6.3 Calculating with Dates and Times Using a CM Business

Calendar

Example: Using a Time Trigger with a Business Calendar to Calculate

Escalation Time (CM 6.9)

Fig. 1: ConSol*CM Process Designer - Time Trigger for Escalation 4 Hours before Deadline

Script for time trigger for escalation 4 hours before deadline

def deadl = ticket.get("serviceDesk_fields.desiredDeadline")

// 4hrs before deadline the escalation should be set

// business calendar should be used

// ServiceDeskCalendar is assigned to queue ServiceDesk, this is transparent here

def now = new Date()

// time required in millisecds

def four_hours = -4*60*60*1000L

// calculate escalation date

def escalDate = BusinessCalendarUtil.getBusinessTime(deadl, four_hours, ticket.queue.calendar)

// calculate and set due time

def dueTime = escalDate.time - now.time

trigger.setDueTime(dueTime)

162 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.7 ConSol*CM Process Designer Manual - Working

with Object Relations

6.7.1 Working with Object Relations

In ConSol*CM, you can work with two types of relations:

Relation type Explanation

Ticket Relations Hierarchical or one-level relations between two

tickets, see section Working with Ticket Relations

Customer Relations Relations between customer data objects, i.e.

contacts and companies, see section Working with

Customer Relations (Data Object Relations)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 163

6.7.2 Working with Ticket Relations

Working with Ticket Relations

Introduction

Simple Ticket Relation without a Hierarchy

Example: Creating a Simple Relation between Two Tickets

Master-Slave Relations

Example: Creating a Master-Slave Relation between Two Tickets

Syntax: Finding All Slave Tickets

Parent-Child Relations

Example 1: Creating a New Child Ticket as Child of Current Ticket

Example 2: Finding the Parent Ticket of a Ticket

Example 3: Finding All Child Tickets of a Ticket

Example 4: Finding All Brother Tickets (Other Child Tickets) of the Same Parent Ticket

Important Methods for the Work with Ticket Relations

Introduction
Relations between tickets can help to model your business processes in a very efficient way.

ConSol*CM offers three types of relations:

Simple ticket relations

Non-hierarchical, simple reference. Each ticket can have any number of references.

A simple ticket relation can be built by an engineer using the Web Client or by a programmer using

the ConSol*CM programming interface.

In both cases, a reference can only be established between two existing tickets.

Master-Slave relations

Hierarchical. A master ticket can have several slave tickets. A slave ticket always has exactly one

master ticket.

This construct can be built by an engineer using the Web Client or by a programmer using the

ConSol*CM programming interface.

A Master-Slave relation can only be established between two existing tickets, i.e. the tickets both

have to exist first, then a Master-Slave relation can be built to connect them.

Parent-Child relations

Hierarchical. A parent ticket can have several child tickets. A child ticket always has exactly one

parent ticket.

This construct can only be built and manipulated using the ConSol*CM programming interface.

A Parent-Child relation can be built between existing tickets. Also a new child ticket can be created

during the process.

164 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 1: ConSol*CM Relation Types

In this section, we will not explain how to set-up ticket relations using the Web Client, but we will show you

how to establish relations using the programming interface, namely workflow scripts.

In the ConSol*CM Workflow API, the reference type is represented by the class (enum)

. This offers three values:com.consol.cmas.common.model.ticket.TicketRelationType

REFERENCE

MASTER_SLAVE

PARENT_CHILD

Simple Ticket Relation without a Hierarchy
This relation type can be helpful when you want to create references which help to find the tickets related to

one ticket easier than using the search function.

Example use cases are:

When a new ticket is created you want to see if there are any other open tickets from the same

customer. If yes, you create a relation between the tickets. In this way, an engineer can easily jump

from one open ticket of the customer to the next.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 165

When a new ticket is created for a certain hardware category, you want to establish references to all

other tickets with the same hardware type.

This relation type can be built and manipulated using either the Web Client or the programming interface.

Thus, a relation of type can be built within a workflow script and can then be manipulated byREFERENCE

an engineer using the Web Client, provided he/she has the required access rights.

Example: Creating a Simple Relation between Two Tickets

Creating a ticket relation of type REFERENCE using workflowAPI

workflowApi.addRelation(TicketRelationType.REFERENCE, "This is a very important relation",

pSourceTicketId, pTargetTicketId)

Master-Slave Relations
This relation type can be helpful when you want to create a hierarchy between a certain number of existing

tickets. Remember that this relation type can be established using either the Web Client or using the

programming interface. However, here, only the programming approach will be explained.

Example use cases are:

In a company, there are several projects, each represented by a ticket. When the decision has been

made to integrate one of the projects in an overall program (also represented by a ticket), the project

manager uses the workflow activity . There, the correct program has to beIntegrate into Program

selected (e.g. using an ACF). In the script of the workflow activity , the programIntegrate into Program

ticket is set as ticket of the current project ticket.Master

In a service team, tickets for several different products are managed. For each product, there is one

product ticket. When a new service ticket has been opened, the engineer uses the activity Set product

where he can select the related product from a drop-down menu. In the workflow script of the activity

, the service ticket is automatically set as of the product ticket.Set product Slave

Attention:

A Master-Slave relation can be built and manipulated using either the Web Client or the

programming interface. Thus, a relation of type can be built within a workflowMASTER_SLAVE

script and can then be manipulated by an engineer using the Web Client, provided he/she has the

required access rights. Use the construct when you want to make sure that noParent-Child

engineer can manipulate the ticket hierarchy.

166 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Example: Creating a Master-Slave Relation between Two Tickets

Creating a ticket relation of type MASTER_SLAVE using workflowAPI

//in this script the project ticket (= current ticket) is set as slave ticket to

// the program ticket which becomes the master

// fetch the program ticket ID. The ID of the program ticket is already stored

// in a CF in the project (=current) ticket

def progTicketId = ticket.get("ReferencesFields.ProgramTicketId")

// fetch ID of current ticket (which will become the slave)

def mySlaveProjectId = ticket.id

workflowApi.addRelation(TicketRelationType.MASTER_SLAVE, "Slave Ticket: This project is part of

the program indicated in the master ticket", progTicketId, mySlaveProjectId)

Syntax: Finding All Slave Tickets

Version A: Finding all target tickets (here: all slave tickets)

// the ticket can be set, might be current ticket or another ticket

List<Ticket> mytickets = workflowApi.getTargetTickets(myTicket.getId(),

TicketRelationType.MASTER_SLAVE)

Version B: Finding all target tickets (here: all slave tickets)

// used for current ticket

List<Ticket> mytickets = workflowApi.getTargetTickets(TicketRelationType.MASTER_SLAVE)

Parent-Child Relations
This relation type can be helpful when you want to create a hierarchy between a certain number of tickets

which should not be manipulated manually.

Example use cases are:

A project should be managed by the project management ticket which becomes the parent. All tasks

within the project are represented as child tickets. This structure is automatically created by a

workflow script during set-up of the project ticket.

A system migration is planned using one parent ticket. For each single component which has to be

migrated a child ticket is built. This structure is automatically created by a workflow script during

set-up of the project ticket.

The relation type can only be built and manipulated using the programming interface.PARENT_CHILD

Thus, a relation of this type can be built within a workflow script and can then only be manipulated by other

scripts.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 167

Example 1: Creating a New Child Ticket as Child of Current Ticket

Creating a child ticket

// this script creates a ticket for a task which will be child ticket

// of a project ticket (which will be the parent)

// create a new ticket, which will become the task (=child) ticket

Ticket newTask = new Ticket()

// fetch the subject of the parent-to-be ticket, i.e. of the current ticket

def subj = ticket.subject

// or longer: def subj = ticket.getSubject()

// set the subject of the new task (= child) ticket

newTask.setSubject("New Task for project " + subj)

// put the task (= child) ticket into the tasks queue

def tasksQueue = queueService.getByName("Tasks")

newTask.setQueue(tasksQueue)

// Initially, the new task ticket will not have an engineer

newTask.setEngineer(null)

// define the ticket text, i.e. the first comment in the new task ticket

def taskTicketText = "Please work on this task asap"

// the contact for the new task ticket should be the same as the one for the project ticket:

def taskContact = workflowApi.getPrimaryContact()

//create PARENT_CHILD relation between project (parent) and task (child)

workflowApi.createChildTicket(newTask, taskTicketText, taskContact)

Example 2: Finding the Parent Ticket of a Ticket

Finding the parent ticket of a ticket

def my_parent = workflowAPI.getParentTicket()

Example 3: Finding All Child Tickets of a Ticket

Finding all child tickets of a ticket

// only works for current ticket:

List<Ticket> my_childtickets = workflowApi.getChildTickets()

168 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Example 4: Finding All Brother Tickets (Other Child Tickets) of the Same Parent

Ticket

Finding all brother tickets of a (child) ticket

// only works for current ticket:

List<Ticket> my_brothers = workflowApi.getBrotherTickets()

Important Methods for the Work with Ticket Relations
Note the following rules for the work with ticket relations:

In MASTER_SLAVE relations, the master is always the source.

In PARENT_CHILD relations, the parent is always the source.

In simple REFERENCE relations the source is the ticket from which the relation has been created.

The following methods are methods of the class which is implicitly available as WorkflowContextService

 object in workflow scripts.workflowApi

Method Explanation

Ticket createChildTicket(Ticket pTicket, pTicString

ketText, Unit pCustomer)

Creates a new child ticket. Queue, priority, and

category have to be set correctly.

List getChildTickets() IntSet containing the ticket objects of the child

tickets of the current ticket.

List getBrotherTickets() IntSet containing the ticket objects of the brother

tickets of the current ticket.

Ticket getParentTicket() Ticket object of the parent ticket or if thenull

current ticket does not have a parent ticket.

List getTargetTickets(TicketRelationType pType) Get list of ticket objects that current ticket has

relations of certain type to. For those relations, the

current ticket is the source ticket.

List getTargetTickets(long pTicketId,

TicketRelationType pType)

Get list of ticket objects that current ticket has

relations of certain type t . For those relations, theo

ticket given with is the source ticket.pTicketId

List getSourceTickets(TicketRelationType pType) Get list of ticket objects that current ticket has

relations of certain type from. For those relations,

the current ticket is the destination ticket.

List getSourceTickets(long pTicketId,

TicketRelationType pType)

Get list of ticket objects that current ticket has

relations of certain type from. For those relations,

the given ticket is the destination ticket.

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/List.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/List.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/List.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/List.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/List.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/List.html?is-external=true

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 169

Method Explanation

boolean hasTargetTickets(TicketRelationType

pType)

Check if ticket has target tickets. Check if relations

exist that have this ticket as source ticket.

boolean hasTargetTickets(long pTicketId,

TicketRelationType pType)

Check if given ticket has target tickets. Check if

relations exist that have this ticket as source ticket.

boolean hasSourceTickets(TicketRelationType

pType)

Check if ticket has source tickets. Check if relations

exist that have this ticket as target ticket.

boolean hasSourceTickets(long pTicketId,

TicketRelationType pType)

Check if given ticket has source tickets. Check if

relations exist that have this ticket as target ticket.

void changeSourceTickets(TicketRelationType

pType, long pTargetTicketId, < >List Long

pSourceTicketIds)

For the target ticket (e.g. a child ticket) the relations

of a given type (e.g. PARENT_CHILD) are

removed. For the same relation type a new relation

is created with the provided source tickets.

void changeTargetTickets(TicketRelationType

pType, long pSourceTicketId, < >List Long

pTargetTicketsIds)

For the given source ticket all relations of the given

type are removed. For the list of provided target

tickets new relations of the given type are created.

void removeRelation(TicketRelationType pType,

long pSourceTicketId, long pTargetTicketId)

Remove ticket relation between two tickets with

specified type.

void addRelation(TicketRelationType pType, String

pComment, long pSourceTicketId, long

pTargetTicketId)

Add relation of the specified type between ticket so

 and .urceTicketId targetTicketId

http://docs.oracle.com/javase/6/docs/api/java/util/List.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/Long.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/util/List.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/Long.html?is-external=true
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html?is-external=true

170 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.7.3 Working with Customer Relations (Data Object Relations)

Working with Customer Relations (Data Object Relations)

Introduction

Creating Unit Relations Using the Programming Interface

Example: Add a Reseller - End Customer Relation

Important Java Classes for the Work with Unit Relations

Introduction
Since version 6.9.0, ConSol*CM offers . In older versions, this feature is not available!customer relations

To be able to work with customer relations, you have to have a profound knowledge of the , theFlexCDM

ConSol*CM Flexible Customer Model. Please refer to the forConSol*CM Administrator Manual (Version 6.9)

a detailed introduction.

Three objects are essential:

Object Java class Admin-Tool

description

Explanation

Customer Unit <none> The general description

or the general object

which represents a

customer, i.e. some

person or company who

is registered in the CM

database

Company Unit Data object of type com

pany

An object on company

level (i.e. the highest

level in the customer

model). This can be a

real company or this can

be a machine or another

object which represents

the level. An object on

the cancompany level

be the forparent level

an object on the contact

.level

From a logical point of

view, a company can

have several contacts.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 171

Object Java class Admin-Tool

description

Explanation

Contact Unit Data object of type cont

act

An object on contact

level (i.e. the lowest

level in the customer

model). This can be a

real person or another

object which represents

the level. An object on

the can becontact level

a stand-alone object (in

a one-level customer

model) or can belong to

a object.company level

From a logical point of

view, a contact can

belong to none or

exactly one company.

Attention:

Keep in mind that, starting with CM version 6.9, the main customer of a ticket can be a contact or a

company! The method used is . This returns an object of class . Theticket.getMainContact() Unit

object can be a contact or a company!

Customer relations represent relations between customers, i.e. companies and contacts.

They can be:

directional

different levels in a hierarchy

reference

same level, no hierarchy

A relation is of one of the following types:

company - company

e.g. (company X cooperates with company Y)has a cooperation with

The companies can belong to the same or to different customer groups.

The involved customer groups can have the same or different customer data models.

172 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

company - contact

e.g. (contact X is customer of company Y) is customer of

The company and the contact can belong to the same or to different customer groups.

The involved customer groups can have the same or different customer data models.

contact - contact

e.g. (contact X from company X is serviced by contact Y from company Y)is serviced by

The companies and contacts can belong to the same or to different customer groups.

The involved customer groups can have the same or different customer data models.

In the programming interface, a customer object (i.e. a contact or a company) is represented by an object of

the class .Unit

Fig. 1: ConSol*CM Customer Relations

Attention:

To work with relations in workflow scripts, make sure you have established and configured allunit

required relations using the Admin-Tool before you start programming.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 173

Creating Unit Relations Using the Programming Interface

Attention:

In this book we sometimes use the new terms and which are partdata object data object definition

of the new customer model of ConSol*CM version 6.9 and higher (). However, the namesFlexCDM

of the corresponding Java classes are still and . All other Java classes whichUnit UnitDefinition

deal with customer data objects are also still named Please keep that in mind when youUnit... .

work on the administrator level as well as on the programmer's level with a 6.9.x version. Please

refer to the documentation for details.ConSol*CM Java API

Example: Add a Reseller - End Customer Relation
In the following example, a relation has been defined in the Admin-Tool to reflect a reseller - end customer

relation. A company of the customer group sells products to a customer (a person, a contact) of theReseller

customer group .DirectCustomers

Fig. 2: ConSol*CM Admin-Tool - Definition of Reseller - End Customer Relation

A ticket is created with a main customer. This customer is an employee of a reseller company. The end

customer to whom the reseller company sells products is added as additional customer in the role end

 to the ticket. The engineer who works on the ticket should be able to create a relation between thecustomer

reseller company (source) and the end customer person (target) using a workflow activity.

174 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 3: ConSol*CM/Web Client - Example Ticket with Main Customer and One Additional Customer

In the workflow, there is a workflow activity (seeService Desk Add RESELLER-END CUSTOMER relation

next figure).

Fig. 4: ConSol*CM Process Designer - Workflow Activity for Adding a Unit Relation

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 175

The following script is used in the workflow activity :Add RESELLER-END CUSTOMER relation

Adding a data object relation using a workflow script

// get Company of the main customer of the ticket, this is the RESELLER company:

// 1. get the main contact of the ticket. Here, this is a person = contact:

def cont = ticket.getMainContact()

// 2. get the company of the contact, this is the reseller company

def comp = cont.getCompany()

// get all additional contacts of the ticket in the customer role „end customer“

//and start the loop for all those additional customers:

def end_custs = ticket.getContacts("end customer").each() { e_cust ->

 //build all components for new unit relation:

 // 1.get the UnitDefinition by name (this is the name used in the Admin-Tool):

 def unitrel_def = unitRelationDefinitionService.getByName("ResellerDirectCustomersRelation")

 // create a new unit relation object with the unit definition and source

 // (the reseller company) and target (the end customer person)

 def new_rel = new UnitRelation(unitrel_def, comp, e_cust, "This Reseller sells to the end

customer")

 // create the new unit relation in the system

 def new_rel2 = unitRelationService.create(new_rel)

}

When the engineer has executed the workflow activity, the relation from the company to the reseller end

 has been established.user

176 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 5: ConSol*CM/Web Client - New Unit Relation (Created by Workflow Script)

Important Java Classes for the Work with Unit Relations

Java class Explanation

Unit A data object (unit): a contact or a company.

UnitRelation A relation between two data objects (units). Visible

in the Web Client on the contact or company page

under .Relations

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 177

Java class Explanation

UnitRelationDefinition The definition of a unit relation as configured in the

Admin-Tool under - User attributes Data object

. A always has a certain relations UnitRelation Unit

.RelationDefinition

UnitRelationDefinitionService Singleton. Available as object unitRelationDefinition

. Service which provides helpful methodsService

for the work with data object (unit) relations. See

the documentation forConSol*CM Java API

details.

UnitRelationService Singleton. Available as object .unitRelationService

Service which provides helpful methods for the

work with data object (unit) relations. See the ConS

 documentation for details.ol*CM Java API

178 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

1.

a.

b.

2.

a.

b.

6.8 Searching for Tickets and Customers Using the

ConSol*CM Workflow API

Searching for Tickets and Customers Using the ConSol*CM Workflow API

Introduction

Searching for Tickets

Example 1: General Example to Search for Tickets

Example 2: Find All Tickets with the Same Service as the Current Ticket

Example 3: Search for Tickets by Unit

Searching for Units (Contacts and Companies)

Example 1: Search for Contacts by First Name and Last Name

General Syntax for Unit Search by Enum Value

Example 2: Search for Units by Enum Value

6.8.1 Introduction

In ConSol*CM you can search the database for tickets or for units (contacts and companies). Both search

modes are based on the same principle:

A object is created where all parameters for the target objects are stored.criteria

TicketCriteria for tickets

UnitCriteria for contacts and companies

This criteria object is handed over to a service which then returns a list with the result objects.

workflowApi (WorkflowContextService) for tickets

UnitService for units

The fields which are set as parameters for the criteria objects have to be indexed, i.e. the annotation

 has to be set.field-indexed

6.8.2 Searching for Tickets

To search for tickets you have to create the object. The following fields can be set (see alsoTicketCriteria

the respective methods in the following picture):setter

Date of ticket creation

Engineer

System-specific custom fields

Ticket history criteria

Ticket IDs

Modification date

Ticket name

Pattern for the ticket subject

Queue IDs

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 179

IDs for current workflow scopes

Current status (closed/open)

Additional engineers

Fig. 1: Setter Methods of Class TicketCriteria, CM Version 6.9.3

The object has to be handed over to the which is implicitly availableTicketCriteria WorkflowContextService

as singleton in each script. Please see the following examples and refer to the workflowAPI ConSol*CM

 documentation for details about classes and methods.Workflow API Java

Example 1: General Example to Search for Tickets

Search for tickets

def ticketCrit = new TicketCriteria()

ticketCrit.subject = "TICKET_SUBJECT"

ticketCrit.setQueueIds([new Long(workflowApi.getQueueByName("QUEUE_NAME").id)] as Set)

ticketCrit.setFields([new StringField(new FieldKey("FIELD_GROUP", "FIELD_NAME"),

"SEARCH_VALUE")] as Set)

def foundTickets = workflowApi.getTicketsByCriteria(ticketCrit)

def firstTicket = foundTickets?.first()

Example 2: Find All Tickets with the Same Service as the Current Ticket
The following example is taken from a workflow of a help desk environment. When the ticket has been

created and the service has been set from a list, the workflow should check automatically if there are other

open tickets with the same service. A dependent is used for the services:enum

1st level

Several categories, one of them is .HARDWARE

2nd level

Exists only when was selected in the 1st level. In the 2nd level, hardware categories areHARDWARE

listed.

180 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Find tickets with the same service as the current ticket

def crit = new TicketCriteria()

crit.setStatus(TicketCriteria.Status.OPEN)

Set<AbstractField> cfs = new HashSet<AbstractField>();

if (serv1.getName().equals("HARDWARE")){

 def serv2 = ticket.get("Service_Fields.Hardware")

 cfs.add(new EnumField(new FieldKey("Service_Fields", "Hardware"), serv2));

} else {

 cfs.add(new EnumField(new FieldKey("Service_Fields", "Service"), serv1));

}

crit.setFields(cfs)

List<Ticket> foundTickets = workflowApi.getTicketsByCriteria(crit);

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 181

Example 3: Search for Tickets by Unit
In this example, we look for the ticket for a certain company.Account Management

Search for tickets by unit

import com.consol.cmas.common.model.scripting.unit.PostActionType

import com.consol.cmas.common.model.scripting.unit.PostActionParameter

import com.consol.cmas.common.model.customfield.Unit

import com.consol.cmas.common.model.ticket.TicketCriteria

import com.consol.cmas.common.model.customfield.ListField

import com.consol.cmas.common.model.customfield.ContactReferenceField

import com.consol.cmas.common.model.customfield.UnitReferenceSearchField

import com.consol.cmas.common.model.customfield.ContactReferenceSearchField

import com.consol.cmas.common.model.customfield.meta.FieldKey

import com.consol.cmas.common.model.ticket.Ticket

import com.consol.cmas.common.model.ContactTicketRole

import com.consol.cmas.common.model.customfield.StringField

import com.consol.cmas.common.model.scripting.unit.UnitActionScriptResult

//get AM queue for search

def q_id = (workflowApi.getQueueByName("AccountManagement")).id

def q_ids = new HashSet()

q_ids.add(q_id)

//find AM ticket for the company

def crit = new TicketCriteria()

crit.setQueueIds(q_ids)

// Create List Field Key

def contactSearchListFieldKey = new FieldKey("queue_fields","contacts")

// Prepare List Field

def contactsListField = new ListField(contactSearchListFieldKey)

// Create Memberfield Key

def contactSearchFieldKey = new FieldKey("queue_fields","contacts_member")

// Create Unit Memberfield with Unit and Ticket-Main Role

def contactsMember = new ContactReferenceSearchField(contactSearchFieldKey, unit,

ContactTicketRole.MAIN_ROLE)

// Put Member Field in Unit List Field

contactsListField.addChild(contactsMember)

// Put prepared fields into TicketCriteria

crit.setFields([contactsListField] as Set)

// Search ... and Result

def foundTickets = ticketService.getByCriteria(crit)

println "Found tickets: ${foundTickets}"

if (foundTickets) {

 def AM_tic = foundTickets.first()

 def AM_tic_id = AM_tic.id

}

182 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.8.3 Searching for Units (Contacts and Companies)

To search for units (i.e. for contacts and/or companies) you have to create the object. TheUnitCriteria

following fields can be set (see also the respective methods in the following picture):setter

Customer group

System-specific data object group fields

Unit IDs

Patterns for units

Phone number (new in CM version 6.9.3, used for CM/Phone)

TicketCriteria

UnitDefinition name

Boolean UseInCriterion

Then you use the to get the search result.unitService

Fig. 2: Setter Methods of Class UnitCriteria, CM Version 6.9.3

Example 1: Search for Contacts by First Name and Last Name

Search for contacts by first name and last name

def unitCrit = new UnitCriteria()

unitCrit.setFields([new StringField(new FieldKey("UNIT_GROUP_NAME", "firstname"), "Max"),

 new StringField(new FieldKey("UNIT_GROUP_NAME", "lastname"), "Mustermann")]

as Set)

def foundContacts = unitService.getByCriteria(unitCrit)

def firstContact = foundContacts?.first()

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 183

General Syntax for Unit Search by Enum Value

Search for units by enum value (general syntax)

import com.consol.cmas.common.model.customfield.UnitCriteria

import com.consol.cmas.common.model.customfield.EnumSearchField

import com.consol.cmas.common.model.customfield.meta.FieldKey

def unitCrit = new UnitCriteria()

def companyEnumField = new EnumSearchField(new FieldKey("customer", "company"),

[enumService.getValueByName("ENUM_GROUP_NAME",ENUM_VALUE_NAME)] as Set)

unitCrit.setFields([companyEnumField] as Set)

unitService.getByCriteria(unitCrit).each { foundContact ->

 println "Processing found contact: "+foundContact.get("name")

}

Example 2: Search for Units by Enum Value

Search for units by enum value (example)

def unitCrit = new UnitCriteria()

//all other UnitCriteria init operations skipped

// this is the requested value inside the list:

def secLvl = ticket.get("transportEntryData.securityLevel")

//ShipperData/securityLevel is the path of the EnumField inside the list

def secLvlEnumFieldKey = new FieldKey("ShipperData","securityLevel")

//create the template field with FieldKey and our value to search for

def secLvlTemplateField = new EnumField(secLvlEnumFieldKey, secLvl)

//ShipperData/securityLevels is the path of the list itself

def secLvlListTemplateFieldKey = new FieldKey("ShipperData","securityLevels")

//init the template list with the value to be searched for

def secLvlListTemplateField = new ListField(secLvlListTemplateFieldKey,[secLvlTemplateField])

// put the template list into the UnitCriteria object

def unitCrit.setFields([secLvlListTemplateField] as Set)

// Search ... and Result

def shippers = unitService.getByCriteria(unitCrit)

184 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

6.9 Debug Information

6.9.1 Introduction

Sometimes you might want to check the output of a workflow or Admin-Tool script by using debug output into

log files. In ConSol*CM, the debug output usually is written to which is located in the followingserver.log

path:

In JBoss:

<SERVER_HOME>\log\server.log

In Oracle WebLogic:

<DOMAIN_HOME>\cm-logs and <DOMAIN_HOME>\cmrf-logs\server.log

The logging configuration can be changed by editing the configuration file. If you have defined alog4j

non-standard log path, you will know where to find the file.server.log

As an alternative, you can write information into the ticket as text.

6.9.2 Using Statements for Debug Output

Debug Output to server.log File
The following statements can be used to write log information to the file. This works in workflowserver.log

scripts as well as in Admin-Tool scripts.

println 'This is my debug message.'

println("This is my debug message.")

log.info("This is my debug message.")

log.info "This is my debug message."

Attention:

In a WebLogic system, usually the statement has to be used. The might not work.log.info println

Debug Output as Text Entry in Ticket
If you would like to display the information to the ticket (e.g. because you do not have access to the file

system where the log files are stored) you can write the text into the ticket as regular comment:

workflowApi.addTicketText('This is my debug message', 'This is the subject

of my debug message', false)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 185

Debugging ConSol*CM Standard Scripts
In ConSol*CM standard scripts, e.g. , you will find statements similar to the following:createTicket.groovy

Debug entry in ConSol*CM standard e-mail script

if (log.isDebugEnabled()) {

 log.debug("Extracted email from from-field is $email")

}

To activate the debug output, i.e. to have CM write the debug information into the log file, you have to set the

log level of the respective module (here: e-mail) to . This is done in the file .DEBUG jboss-log4j.xml

We will not elaborate on this topic here. If you would like to learn more about CM logging, please refer to the

.ConSol*CM Operations Manual

186 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

7 Best Practices

Best Practices

The Basic Organization of a Workflow: Using Scopes

Variant A: Use of a Global Scope

Variant B: Use of Three or More Main Scopes

The Position of the START Node

Store Some Workflow Scripts in the Admin-Tool

When to Use Admin-Tool Workflow Scripts

How to Use Admin-Tool Workflow Scripts

Consider the Use of Trigger Combinations Well

Do Not Trigger Ticket Update Events If Not Really Required

How to Use the Disable Auto Update Parameter

Avoid Self-Triggering Business Event Triggers

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 187

7.1 The Basic Organization of a Workflow: Using

Scopes

One of the first things you have to consider, when you start making a concept for a workflow, is the number

and organization of scopes.

Information:

Of course you can always modify the workflow in later steps, but this might have implications for

existing tickets, views, and reports. This is particularly significant if the workfow is used in a

production environment.

Consider the following points when setting up the basic structure of a workflow:

Which trigger should be active for the ticket in which states of the process?

For example, should a time trigger, which monitors the new tickets, also be active for tickets which are

already in progress? Or, should a mail trigger be active when the ticket has been finished by the

engineer?

Which views are required?

Views are based on the position of tickets in scopes, see sectionConSol*CM Administrator Manual

for details.View Administration

7.1.1 Variant A: Use of a Global Scope

A global scope is a scope which contains all other scopes of the workflow. You might want to use such a

global scope because some processes require reactions to events during the entire process. Those events

are implemented using triggers which are attached to the global scope. For example, if you want to

supervise for the entire process, if an e-mail has been received, you attach a mail trigger (see section Mail

) to the global scope. All sub-scopes of the global scope inherit the sensitivity to this trigger. If theTriggers

e-mail should only be supervised for a sub-scope, you can attach the mail trigger to this sub-scope.

The same applies to all kinds of triggers, i.e. business event triggers (see section)Business Event Triggers

and time triggers (see section).Time Triggers

The START node always has to be positioned outside the Global Scope!

188 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 1: ConSol*CM Process Designer - Workflow with Global Scope

Please keep in mind that you can always use triggers in inner scopes which will then consume the event

(see section as an example for business event triggers). ForFiring Order of Business Event Triggers

example, if you would like to use a mail trigger in the entire process in the global scope but you need a

certain reaction of the ticket in the scope, you can use a mail trigger which is attached to the Finished

 scope.Finished

7.1.2 Variant B: Use of Three or More Main Scopes

An alternative way to construct a workflow is to use three or more main scopes:

New tickets

In progress (only here, a mail trigger is applied)

Closed tickets (in one or more separate scopes)

The following picture shows an example for a workflow which has been built according to this principle.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 189

Fig. 2: ConSol*CM Process Designer - Workflow with Three Types of Main Scopes

190 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

7.2 The Position of the START Node

The best position of the depends on the use of triggers in the following scope. If time triggersSTART Node

are used in the first scope, where tickets are forwarded after the start node, the start node should be placed

outside the scope. In case the start node is placed inside the first scope, the time trigger might not be

initialized correctly. So place the start node in the default scope.

Fig. 3: ConSol*CM Process Designer - Position of START Node

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 191

7.3 Store Some Workflow Scripts in the Admin-Tool

For scripts, which are used over and over again in workflow activity and/or precondition scripts, it might be

better to store them in the section of the Admin-Tool and call them from the workflow script.Script

7.3.1 When to Use Admin-Tool Workflow Scripts

We would neither recommend to always use this method nor would we advise against it. We will illustrate the

advantages and disadvantages of this approach and you can then decide for yourself where in your system

you want to apply it.

The of storing workflow scripts in the Admin-Tool are the following:advantages

The script is stored only once and has to be maintained/changed at only one place.

Changes of the scripts are executed in the system just in-time, no deployment (as for workflows) is

required.

The of storing workflow scripts in the Admin-Tool are the following:disadvantages

The process logic is stored at two separate places, i.e. you always have to work with the Process

Designer as well as with the Admin-Tool to see the entire process.

The Script Editor in the Admin-Tool is not as comfortable as the Workflow Script Editor.

Most objects have to be imported into Admin-Tool scripts, because they are not present implicitly.

A workflow export alone is not sufficient to move the workflow, because scripts in the Admin-Tool are

not included in the export.

7.3.2 How to Use Admin-Tool Workflow Scripts

Admin-Tool scripts which are used in the workflow have to be of type . An Admin-Tool script isWorkflow

always called from the workflow using the interface .ScriptProvider

Calling an Admin-Tool script from the workflow

def scriptProvider = scriptProviderService.createDatabaseProvider("scriptName.groovy")

def r = scriptExecutionService.execute(scriptProvider)

192 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Calling an Admin-Tool script from the workflow with use of parameters

// Create the scriptProvider for the required Admin-Tool script, here "scriptName.groovy"

def scriptProvider = scriptProviderService.createDatabaseProvider("scriptName.groovy")

// Define a HashMap with the key-value pairs which you would like to pass to the Admin-Tool

def params = ["templateName": "newCustomer"]

// Execute the script. The passed parameters are available in the Admin-Tool script. In the

// example, the variable templateName does not have to be defined in the Admin-Tool script

// but it is present based on the definition in the passed HashMap.

// The variable r will contain the return value of the script or Null if there is no return

// value

def r = scriptExecutionService.execute(scriptProvider, params)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 193

7.4 Consider the Use of Trigger Combinations Well

Attention:

Beware of unnecessary trigger executions! They will consume resources and slow down

application performance.

Example 1:

This example shows many business event triggers in one big scope.global

Fig. 4: ConSol*CM Process Designer - Scope with Triggers

194 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Example 2:

If it is possible, please use triggers in the smallest scope possible (in this example, the trigger with Decision6

was moved to a smaller scope).

Fig. 5: ConSol*CM Process Designer - Move Trigger to Smaller Scope

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 195

Example 3:

If it is possible to move triggers to smaller scopes and you do not want to call all of the triggers whilenot

executing some activity, move this activity to an outside scope without any triggers.

Fig. 6: ConSol*CM Process Designer - Separate Scopes with and without Triggers

In this example, the position of is optimized. It triggered many calls and all of them wentActivity11 Decision

to . Executing outside of the global scope keeps a good quality of workflowNOTHING Acitivity11

performance!

196 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

7.5 Do Not Trigger Ticket Update Events If Not Really

Required

Attention:

Beware of unnecessary ticket update events (Java class)!TicketUpdateEvent

For example, assigning the current engineer (the engineer who is logged in and working with the Web Client)

to a ticket can be done in two ways. In one solution a ticket update event is fired, in the other this does not

happen. If it is not necessary for a business case to throw a , avoid it, because anTicketUpdateEvent

unnecessary call of causes a decrease in performance.TicketUpdateEvent

Code which triggers TicketUpdateEvent

//this method throws a TicketUpdateEvent after assigning the current engineer to the ticket

workflowApi.assignEngineer(workflowApi.currentEngineer)

Code which does not trigger TicketUpdateEvent

//this method does NOT throw a TicketUpdateEvent!

ticket.setEngineer(workflowApi.currentEngineer)

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 197

7.6 How to Use the Disable Auto Update Parameter

Attention:

Use the flag for workflow components with care!disable auto update

Please remember that a ticket udpate event is by default fired after every activity execution. A ticket update

event is an operation that has a great impact and must be used with care!

To avoid performance problems, you can use the flag. It depends on the business logic,disable auto update

if it makes sense to use this flag or not.

For example, when we have a series of automatic activities, a good practice is:

The automatic activity has the flag .1st disable auto update on

(It will call the ticket update service method after activity execution.)not

The automatic activity has the flag .2nd disable auto update on

(It will call the ticket update service method after activity execution.)not

The automatic activity has the flag .3rd disable auto update on

(It will call the ticket update service method after activity execution.)not

...

The automatic activity has the flag .last disable auto update off

(It call , at the of the pipeline!)will TicketUpdateEvent once end

198 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Fig. 7: ConSol*CM Process Designer - Activities with "disable auto update" Option

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 199

7.7 Avoid Self-Triggering Business Event Triggers

When you use a business event trigger which is followed by an automatic activity, be careful that in this

automatic activity the fields or objects, which trigger the business event trigger, are not changed again

(which would fire the trigger again)!

If the use case requires that the fields, which caused the firing of the trigger, have to be changed again, then

the logic, where the fields are changed, has to be placed in an activity outside the scope which hosts the

trigger.

Fig. 8: ConSol*CM Process Designer - Avoiding Self-Triggering Business Event Triggers

200 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

8 Deploying Workflows

Deploying Workflows

Introduction and Workflow Life Cycle

Engineer Rights Required for Workflow Deployment

Actions During Workflow Deployment

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 201

8.1 Introduction and Workflow Life Cycle

During the development of a workflow you use the following functions which reflect the workflow life cycle:

Load the workflow or create a new workflow, e.g. version 1.2.

Edit the workflow.

Save the workflow as a new version. A new version number will be used, e.g. 2.0.

Continue editing the workflow.

Save the workflow in the current version, e.g. version 2.0.

Continue editing the workflow.

Deploy the workflow. This will and the workflow, e.g. version 3.0.save deploy

A deployed workflow always has an increased major number compared to the last saved version.

The workflow which was active/deployed before is now no longer active, but the new version of the

workflow is in operation at once. The ConSol*CM system does not have to be stopped.

The new version is marked in bold characters and with status in the workflow listcurrently deployed

which is opened for the and operations.Load Delete

After this step, the next saved version will be saved as .new version

Attention:

Make sure you are aware of the number of tickets which have to be transferred when a new

workflow is deployed! The deploy operation might take some time in large environments! See

section .Actions During Workflow Deployment

202 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

8.2 Engineer Rights Required for Workflow Deployment

An engineer who is supposed to deploy workflows must have at least one role with one of the following

access rights:

Global Permissions:

Administrate

Workflow Permissions:

Deploy workflow

Fig. 1: ConSol*CM Admin-Tool - Engineer Permissions for Deploying Workflows

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 203

1.

2.

1.

2.

3.

a.

b.

c.

8.3 Actions During Workflow Deployment

When a workfow is deployed, it will be active at once. Thus, consider well what will happen to open tickets

which are in a queue where the new workflow will be applied. They will be transferred to the new workflow.

In case you have performed one or more of the following steps:

removed one or more activities

added one or more automatic activities

added one or more triggers

the following actions will be initiated after you have pressed the buttonDeploy .

You will be prompted for a decision concerning the open tickets in the respective queues which cannot stay

at their previous position within the process because the workflow architecture was changed:

Stay as close as possible to the previous position (default).

Let all those tickets start the process from the beginning.

In case you choose the first option (), the following actions will be performed:keep position

The transfer of tickets starts.

The name of the ticket's last executed activity is compared to the names in the current workflow

definition. If the ticket's activity is no longer in the workflow definition, a new target activity for the

ticket must be found.

The for the ticket is loaded. The transfer engine iterates over all activities executed from theHistory

beginning of the process instance and tries to find one which would be suitable, i.e. which

is still present in the workflow definition,

is not a trigger target element,

is not a dead end activity.

Each ticket which cannot keep its position will be moved to the suitable position according to those criteria.

In any case the tickets will be moved backwards, never forwards, within the workflow.

For a of all ticket transfers click on in the main menu and select :summary View Show ticket transfer history

Workflow name

Name of the workflow.

Version

Version of the old workflow.

Start time

Start of the transfer. Will be the start time of the operation.Deploy

End time

End of the transfer. After this time the new workflow will be in full operation.

204 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Transferred tickets

Number of tickets which have been transferred, i.e. which had to be touched by the system during

workflow deployment. Should be identical to the sum of open tickets in all queues which use the

workflow.

Details

Additional information concerning the deployment with ticket transfer.

In the bottom right corner of the Process Designer GUI, the overall status of the ticket transfer is displayed.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 205

9 Appendix A - List of Annotations

Appendix A - List of Annotations

Alphabetical List of Field Annotations (up to Version 6.9.3)

Alphabetical List of Group Annotations (Version 6.8 and Older)

Alphabetical List of Group Annotations (Version 6.9 and Higher)

206 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

9.1 Alphabetical List of Field Annotations (up to Version

6.9.3)

Name Annotation

Type

Description Values Comment

A accuracy validation For date fields,

to define the

level of detail

displayed.

date (default) Show date

without time.

date-time Show date with

time.

only-time Show only

time, no date.

B boolean-type component-typ

e

Definition of the

layout of a

boolean field.

check box

(default)

Field that can

be checked

(set to byfalse

default).

radio 2 radio buttons

(yes/no) for

selection (only

one can be

active).

select Drop-down-fiel

d with 2 values

(yes/no).

C colspan layout Defines how

many columns

are reserved

for the field in

the layout.

<number> Number of

columns.

contact search

result column

search-result Identifies

whether the

field should be

presented in

the search

result by

default.

true Remove the

annotation if

the field should

not be visible

by default.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 207

Name Annotation

Type

Description Values Comment

contains

contacts

ticket contact

relation

Used only for

list field

definition,

indicates that

the defined

fields can hold

contact

information.

true / false Necessary to

distinguish if

the list is

shown with the

contact (true)

or with the

ticket (false).

D dialable phone

commander

Defines a field

with a phone

number.

true Remove the

annotation if

the field should

not hold a

dialable phone

number.

Version 6.9

and higher:

Used with

CM/Phone

only. Marks a

phone number

as

automatically

dialable for

outgoing calls

for the CTI

system.

E email validation Used for e-mail

addresses to

check if the

format is

correct, i.e. if

<name>@<do

main> has

been entered.

true May be used

with custstring

om fields.

Remove the

annotation if

the format

should not be

checked.

208 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Name Annotation

Type

Description Values Comment

enum field with

ticket color

ticket display Defines the

background

color of the

ticket icon for

ticket list and

ticket.

true / false The field has to

exist within

enum

administration

where lists,

values, and

colors are

defined.

enum-in-search

-type

component-typ

e

Defines

whether an

enum field

used in a

search accepts

search over

multiple values.

single (default)

/ multiple

Accepts search

over multiple

values if value

 is set.multiple

enum-type component-typ

e

Layout

definition of list

display.

select (default) Drop-down list

for selection.

radio List of radio

buttons to

select (only one

option can be

active)

autocomplete Drop-down list

for selection

where the field

is an input field

used to filter

the list.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 209

Name Annotation

Type

Description Values Comment

F field-group layout Allows

grouping of

fields in mview

ode. Annotation

is ignored in edi

 mode.t

<string> To group fields

the same string

value has to be

set in the

annotation of

each field. Two

or more custom

fields are

bound when

they share the

same value of

this annotation.

The group of

coupled custom

fields is shown

only if all of

them have

values set.

field indexed indexing Used to

indicate that

the field may

be indexed.

transitive All data is

displayed

(ticket and

customer).

unit Used for

customer data.

Only the unit

and the parent

unit (i.e.

company) is

given as a

search result,

no tickets are

provided.

local Used for

customer data.

Only the unit is

given as a

search result,

no company

and no tickets

are displayed.

210 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Name Annotation

Type

Description Values Comment

not indexed Field is not

indexed.

fieldsize layout Displayed field

size within

ticket layout.

<rows>;<cols> For custostring

m fields with

annotation text-

 and value type

.textarea

<rows> defines

the number of

displayed rows

and <cols>

defines the

number of

characters

displayed per

row. Used only

for layout

purposes.

<number> For enum

custom fields.

Defines how

many values

are directly

visible in the list

box. Used only

for layout

purposes.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 211

Name Annotation

Type

Description Values Comment

format validation Used to check

the correct

format of date

fields.

<date format> The pattern for

the date is

based on Simpl

,eDateFormat

e.g.

dd.mm.yyyy.

Remember to

set the proper c

 whenolspan

you want to

add

hours/minutes.

See http://docs.

oracle.com/jav

ase/6/docs/api/j

ava/text/Simple

DateFormat.ht

 for dateml

format

reference.

G groupable cmweb-commo

n

Enables

grouping in the

ticket list.

true Used only with

enum custom

fields. Remove

the annotation

if you want to

disable

grouping.

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

212 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Name Annotation

Type

Description Values Comment

L label-group layout Indicates a

group of fields

along with its

descriptive

label in mview

ode. Annotation

is ignored in edi

 mode.t

<string> Indicates a

group of

custom fields

along with its

descriptive

label. The

annotation is

used in present

 mode,ation

ignored in edit

mode. The

group can have

exactly one

label (a custom

field of type stri

 withng

assigned

additional

annotation text-

 with value type

). Thelabel

label is shown

when at least

one custom

field from its

group has a

value set. All

fields with the

same label

value are

grouped and

displayed

under this

label.

The annotation

 haslabel-group

to be assigned

to the label,

too.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 213

Name Annotation

Type

Description Values Comment

label-in-view layout Shows custom

field value as a

label in mview

ode. Annotation

is ignored in edi

 mode.t

true Remove the

annotation if

the label should

not be visible in

.view mode

ldapid

only version
6.9 and higher

contact

authentication

Used in a data

object group of

type ,customer

for the data

object group

field which

contains the

LDAP ID for

CM/Track

authentication.

Indicates that

this field will be

used as an

LDAP ID in the

authentication

process. Data

type isstring

required.

Since the

definition is

made on

customer group

level, the LDAP

authentication

can be run in

mixed mode.

I.e. use LDAP

for some

customer

groups and

regular

authentication

for other

customer

groups.

leave-trailing-z

eros

common Used for the

display of fixed

point numbers.

true / false Remaining

zeros of the

fractional part

are not cut off

when value is tr

.ue

214 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Name Annotation

Type

Description Values Comment

list-type component-typ

e

Disables the ad

 and/or d delete

options for

custom fields of

type or list stru

.ct

fixed-size It is not

possible to add

or delete

fields/rows.

non-shrinkable It is not

possible to

delete

fields/rows.

non-growable It is not

possible to add

fields/rows.

M matches validation Checks if input

of custostring

m fields

matches the

given RegEx.

<string> May be used

with custstring

om fields.

maxLength validation Defines the

maximum

length of input

for custostring

m fields.

<number> May be used

with custstring

om fields.

maxValue validation Defines the

maximum value

for custnumber

om fields.

<number> May be used

with cunumber

stom fields, i.e.

 and number fix

ed-point

.number

minLength validation Defines the

minimum

length of input

for custostring

m fields.

<number> May be used

with custstring

om fields.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 215

Name Annotation

Type

Description Values Comment

minValue validation Defines the

minimum value

for custnumber

om fields.

<number> May be used

with cunumber

stom fields, i.e.

 and number fix

ed-point

.number

N no-history-field performance Indicates that a

single custom

field should not

be historized.

Overwrites the

group

annotation no-h

.istory

true / false Annotation is

active if value

is set to .true

For fields that

should be

stored but not

be visible in

history use

annotation visib

ility

.configuration

O order-in-result layout Shows field as

a column in the

search result

list at given

position.

<number> The columns

are sorted in

ascending

order.

P password contact

authentication

Indicates that

this field will be

used as a

password in the

authentication

process.

<string> Used for

CM/Track.

position layout Defines the

position of a

field within a

grid layout.

<number>;<nu

mber>

Values define r

 and ow column

(row;column),

numbering

starts at 0;0. If

no values are

set, the custom

field will take

the next free

grid cell.

216 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Name Annotation

Type

Description Values Comment

Defines the

position of a

field within a list

(struct).

0;<number> Only the colum

 value is used,n

the value isrow

ignored.

R readonly common Used to

indicate that

the custom field

cannot be

modified.

true / false Field is read

only if value is

set to .true

Lack of value

or any value

except isfalse

also treated as

.true

reportable dwh Indicates that

the field is

reportable and

that it should

be transferred

to the DWH.

true / false Field is

reportable if

value is set to tr

.ue

required validation Indicates that

this is a

required field.

true / false Field is

required if

value is set to tr

. The userue

cannot save

the ticket

without having

entered a value

in a required

field. In the

Web Client,

required fields

are marked by

a red asterisk.

rowspan layout Indicates how

many rows

within the

layout are

occupied by

this field.

<number> Number of

rows.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 217

Name Annotation

Type

Description Values Comment

S sortable cmweb-commo

n

Used to enable

sorting of the

ticket list.

true Used for

custom fields of

type orDATE

of type .enum

Remove the

annotation if

you want to

disable sorting.

For fieldsenum

: Works only if

order index is

set for all

values of the e

 field.num

T text-type component-typ

e

Defines the

possible types

of a field.string

text (default) Single-line

input field.

textarea Multi-line input

field.

password Input field for

passwords.

Password will

be displayed as

******* in view

mode.

label Input will be

displayed as a

label, i.e. the

field is

displayed only,

no input is

possible.

218 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Name Annotation

Type

Description Values Comment

url Input will be

displayed as

URL in moview

de. String has

to match the

following

pattern:

"^((?:mailto\:|(?:

(?:ht|f)tps?)\://)

1\S+)(?: (?:\|

)?(.*))?$"

Example:

"http://consol.d

e ConSol*"

ticket-list-colsp

an

layout Defines how

many columns

are occupied

by the field in

the ticket list

box.

<number> Number of

columns.

ticket-list-positi

on

layout Defines the

position of the

field in the

ticket list box.

<number>;<nu

mber>

Values define r

 and ow column

(row;column),

numbering

starts at 0;0.

ticket-list-rowsp

an

layout Defines how

many rows are

occupied by the

field in the

ticket list box.

<number> Number of

rows.

U username contact

authentification

Indicates that

this field will be

used as a login

name in the

authentication

process.

true / false Used for

CM/Track.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 219

Name Annotation

Type

Description Values Comment

V visibility common Defines when

the field is

visible.

edit Field will be

displayed in edi

 mode.t

view Field will be

displayed in vie

 mode.w

none Field is not

visible.

If any other or

no value is set

the field will

always be

visible.

visibility

configuration

visibility Indicates the

visibility of this

field in history.

on every level Field is shown

on every level

of history.

2nd level and

3rd level

Field is shown

only on the 2nd

and the 3rd

level of history.

only 3rd level Field is shown

only on the 3rd

level of history.

220 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

9.2 Alphabetical List of Group Annotations (Version 6.8

and Older)

Name Annotation

Type

 Description Values Comment

C contact history

template name

ticket contact

relation

Describes the

contact

information

shown in ticket

history.

<template

name>

Format is

specified within

the template

definition.

Name of

template is

referenced

here.

contact-templat

e-contact-ticket

-page

contact-templat

es

Used to display

short

information

about a contact

in the ticket and

contact pages.

<template

name>

Format is

specified within

the template

definition.

Name of

template is

referenced

here.

If this

annotation is

not configured,

contact-templat

 will bee-default

used.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 221

Name Annotation

Type

 Description Values Comment

contact-templat

e-default

contact-templat

es

Used to display

short

information

about contacts.

<template

name>

Format is

specified within

the template

definition.

Name of

template is

referenced

here.

If this

annotation is

not configured,

deprecated unit

search

 template name

will be used.

contact-templat

e-dragged

contact-templat

es

Used to display

short

information

about a contact

when contact is

dragged.

<template

name>

Format is

specified within

the template

definition.

Name of

template is

referenced

here.

If this

annotation is

not configured,

contact-templat

 will bee-default

used.

222 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Name Annotation

Type

 Description Values Comment

contact-templat

e-email

contact-templat

es

Used to display

short

information

about a contact

for

auto-completio

n of e-mail

addressee.

<template

name>

Format is

specified within

the template

definition.

Name of

template is

referenced

here.

If this

annotation is

not configured,

contact-templat

 will bee-default

used.

contact-templat

e-quick-search

contact-templat

es

Used to display

short

information

about a contact

in the quick

search result

list.

<template

name>

Format is

specified within

the template

definition.

Name of

template is

referenced

here.

If this

annotation is

not configured,

contact-templat

 will bee-default

used.

contact-templat

e-search

contact-templat

es

Used to display

short

information

about a contact

in the contact

search result

list.

<template

name>

Format is

specified within

the template

definition.

Name of

template is

referenced

here.

If this

annotation is

not configured,

contact-templat

 will bee-default

used.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 223

Name Annotation

Type

 Description Values Comment

contact-templat

e-ticket-list

contact-templat

es

Used to display

short

information

about a contact

in the ticket list.

<template

name>

Format is

specified within

the template

definition.

Name of

template is

referenced

here.

If this

annotation is

not configured,

contact-templat

 will bee-default

used.

contact-templat

e-ticket-referen

ce

contact-templat

es

Used to display

short

information

about a contact

in the ticket

reference

section.

<template

name>

Format is

specified within

the template

definition.

Name of

template is

referenced

here.

If this

annotation is

not configured,

contact-templat

 will bee-default

used.

contact-templat

e-ticket-search

contact-templat

es

Used to display

short

information

about a contact

in the ticket

search result

list.

<template

name>

Format is

specified within

the template

definition.

Name of

template is

referenced

here.

If this

annotation is

not configured,

contact-templat

 will bee-default

used.

224 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Name Annotation

Type

 Description Values Comment

contact-templat

e-workspace-fa

vourite

contact-templat

es

Used to display

short

information

about a contact

in the

workspace and

favourites

sections.

<template

name>

Format is

specified within

the template

definition.

Name of

template is

referenced

here.

If this

annotation is

not configured,

contact-templat

 will bee-default

used.

G group-visibility common Defines the

default visibility

of a custom

field group.

true / false The annotation

can be

overwritten on

field level.

N no-history performance Indicates that

all custom

fields belonging

to this group

will not be

historized.

true / false Possible values

are if thistrue

annotation

should be

active or false

which is the

same like

removing the

annotation. Use

this annotation

if you want to

prevent history

for all/many

fields in a

group. If you

only want to

prevent

historization for

a single/some

field(s), use the

annotation no-h

 onistory-field

field level.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 225

Name Annotation

Type

 Description Values Comment

O open-at-create layout Allows custom

field groups to

be visible

during ticket

creation even if

they are

hidden.

true Remove the

annotation if

the group

should not be

visible.

 R reportable

group

dwh Indicates that

all custom

fields belonging

to this group

are reportable

and should be

transferred to

CMRF.

true / false A value has to

be set.

Annotation is

active if value

is set to .true

S show-contact-i

n-ticket-list

layout Indicates that

the custom field

group (contact)

should be

shown in the

ticket list.

true This annotation

can only be

assigned to

groups with the

annotation unit

.is a contact

Remove the

annotation if

the contact

should not be

shown in the

ticket list.

show-in-group-

section

layout Defines that a

custom field

group is

displayed in the

 section.Groups

true Without this

annotation the

group is shown

in the ticket

header.

U unit is a contact ticket contact

relation

Indicates that

the custom field

group

describes

contact data.

true / false Group is shown

with contact

when ortrue

with ticket

when .false

226 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Name Annotation

Type

 Description Values Comment

unit search

template name

deprecated

indexing Template used

to display short

information

about found

contacts.

<template

name>

Format is

specified within

the template

definition.

Name of

template is

referenced

here.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 227

9.3 Alphabetical List of Group Annotations (Version 6.9

and Higher)

Name Annotation

Type

 Description Values Comment

A auto-open-grou

p

layout The group will

be opened

initially. More

than one value

can be entered

as

comma-separat

ed list (can be

used for the cu

 annotatistomer

on).

ticket:create Group is

opened initially

when a new

ticket is

created.

customer:creat

e

Group is

opened initially

when a new

customer is

created.

customer:view Group is

opened when

the customer

(contact or

company) page

is opened.

G group-visibility common Defines the

default visibility

of a custom

field group.

true / false The annotation

can be

overwritten on

field level.

228 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Name Annotation

Type

 Description Values Comment

N no-history performance Indicates that

all custom

fields belonging

to this group

will not be

historized.

true / false Possible values

are if thistrue

annotation

should be

active or false

which is the

same like

removing the

annotation. Use

this annotation

if you want to

prevent history

for all/many

fields in a

group. If you

only want to

prevent

historization for

a single/some

field(s), use the

annotation no-h

 onistory-field

field level.

 R reportable

group

dwh Indicates that

all custom

fields belonging

to this group

are reportable

and should be

transferred to

CMRF.

true / false A value has to

be set.

Annotation is

active if value

is set to .true

S show-contact-i

n-ticket-list

Obsolete! Use

page

customization!

accordionTicke

tList.mainCusto

merDescription

Visible={true,

false}

obsolete

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 229

Name Annotation

Type

 Description Values Comment

show-in-group-

section

layout Defines that a

custom field

group is

displayed in the

 sectionGroups

(as tab).

true / false Without this

annotation the

group is shown

in the

non-tabbed

ticket data or

contact section.

U unit is a contact

deprecated

ticket contact

relation

true/false Removed in

version 6.9.0.

230 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

10 Appendix B - Glossary

Term Explanation

A Access Rights Permissions of an engineer to

view or make changes to tickets

in the Web Client. Access rights

are always assigned to a group,

never to single engineers/users.

ACIM Activity item - entry in the history

section of a ticket (e.g. comment,

e-mail, attachment, time booking

entry).

AD Microsoft Active Directory - an

LDAP-based directory service for

Microsoft Windows domain

networks.

Additional customer Customer (contact or company)

besides the main customer, e.g.

an employee of the company. For

additional customers, customer

roles can be assigned.

Admin-Tool Graphical application to configure

and manage a ConSol*CM

system. Uses Java Web Start.

B BI Business Intelligence:

Methods, technologies, and

architectures to transform data

into useful information for

business purposes.

C CMDB ConSol*CM Database - the

working database of the CM

system.

CMRF ConSol*CM Reporting

Framework:

JEE application which

synchronizes data between the

ConSol*CM database and the

DWH.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 231

Term Explanation

CM/Office A standard module of

ConSol*CM which enables the

engineer via ConSol*CM/Web

Client to work with MS-Word

documents pre-filled with

ConSol*CM ticket or customer

parameters.

CM/Track Consol*CM web portal:

Provides customer access to the

ConSol*CM system.

Company A data object of type company.

Often this is a real company or

an institution, but it can also be

something else, like a machine or

a ship.

Contact The customer who has a

question or service request.

CTI Computer telephony integration,

a description for any technology

that allows interactions on a

telephone and a computer to be

integrated or coordinated

Customer General term for customer

objects in ConSol*CM. A

customer can be a contact or a

company. Technically, a

customer is a data object. The

respective java class is Unit.

D Data object A customer, contact, or a

company. Former .Unit

Data object group A group of fields where data for

customers (contact or company)

can be stored. Similar to custom

field group for ticket data.

Data object group field A field where data for customers

(contact or company) can be

stored. Similar to custom field for

ticket data.

232 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Term Explanation

DWH Data Warehouse:

ConSol*CM database used for

reporting and data analysis.

E Engineer User who has a login to the Web

Client and who has to manage

the tasks defined in the tickets.

ESB Enterprise Service Bus:

Software architecture used for

communication between mutually

interacting software applications

in a service-oriented architecture

.(SOA)

ERP system Enterprise Resource Planning:

Often used for this type of

enterprise management software.

ETL Extract Transform Load:

Extracts data from one source

(this can be a database or

another source), transforms it,

and loads it into a database, e.g.

a data warehouse.

F FlexCDM The Flexible Customer Data

, the Customer Data ModelModel

which has been introduced in

ConSol*CM in version 6.9. For

each customer group, a specific

customer data model can be

defined.

G GUI Graphical User Interface

I IMAP Internet Message Access

Protocol:

Internet standard protocol to

access e-mail on a remote e-mail

server. Can be used as plain

IMAP or as secure IMAP

(IMAPs). In the latter case the

proper certificates are required.

J Java EE Java Enterprise Edition

http://en.wikipedia.org/wiki/Service-oriented_architecture

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 233

Term Explanation

JMS Java Message Service:

Java EE component used to

send messages between JMS

clients.

K KPI Key Performance Indicator -

parameter used for performance

measurement for companies,

projects etc.

L LDAP Lightweight Directory Access

Protocol:

Application protocol to access

and maintain directory

information over an IP network.

M Mailbox Destination to which e-mail

messages are delivered.

Mailboxes are managed on a

mail server. ConSol*CM can

access one or more separate

mailboxes to retrieve e-mails.

Main customer The customer who is the main

customer of a ticket. Starting with

ConSol*CM version 6.9, this can

be either a contact or a company.

Mule An open source Java-based

Enterprise Service Bus (ESB).

P PCDS Page Customization Definition

Section

Pentaho Pentaho is a businessTM

intelligence (BI) suite which is

available as open source version

and as enterprise edition.

POP Post Office Protocol:

Internet standard protocol to

retrieve e-mails from a remote

server via TCP/IP. Can be used

as plain POP or as secure POP

(POPs). In the latter case the

proper certificates are required.

http://en.wikipedia.org/wiki/LDAP#cite_note-1

234 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Term Explanation

Portal CM/Track:

Provides customer access to

ConSol*CM.

Process Designer Graphical application to model

and program ConSol*CM

workflows. Uses Java Web Start.

Q Queue Comprises tickets from the same

domain and makes sure that all

tickets of this domain are treated

in the same way. A queue always

has one workflow. Access rights

and other parameters are defined

based on queues.

R RDBMS Relational Database

Management System:

E.g. Oracle , MS SQL Server ® ®

, MySQL.

REST Representational State Transfer:

Method to transfer data via a

network, based on HTTP.

Role Defines the access permissions

and views of an engineer.

S Script Program written for a special

run-time environment that can

interpret and automate the

execution of tasks. In

ConSol*CM, scripts are stored in

the Admin-Tool and are stored as

scripts for activities in workflows.

SMTP Simple Message Transfer

Protocol:

Standard protocol to send

e-mails.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 235

Term Explanation

T TAPI Telephony Application

Programming Interface, a

Microsoft Windows API, which

provides computer telephony

integration and enables PCs

running Microsoft Windows to

use telephone services

Template Pre-formatted example

concerning layout, text, and/or

data, e.g. for e-mails or

CM/Office.

Ticket Incident, service case, or other

request of an internal or external

customer. A ticket is the object

which runs through the process

(defined by the workflow).

V View A selection of tickets based on

scopes from one or from different

workflows, assigned to a role,

and visible in the ticket list of the

ConSol*CM/Web Client.

W Workflow Models a process that should be

managed using ConSol*CM step

by step.

236 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

11 Appendix C - System Properties
The lists provide explanation for all available ConSol*CM system properties. You can define properties in the

Admin-Tool, in the section.Configuration

Appendix C - System Properties

System Properties Ordered by Module

System Properties Ordered by Property Name

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 237

11.1 System Properties Ordered by Module

Module Property Explanation

cmas-app-admin-tool admin.tool.session.check.interval Description: Admin-Tool inactive

(ended) sessions check time

interval (in seconds)

 IntegerType:

 YesRestart required:

 YesSystem:

 NoOptional:

 30Example value:

 6.7.5Since:

cmas-app-admin-tool autocomplete.enabled

 only version 6.9 and higher

Description: If the flag is missing

or its value is , then the false Auto

 tab is hidden incomplete address

AT.

 BooleanType:

 NoRestart required:

 YesSystem:

 YesOptional:

 trueExample value:

 6.9.2.0Since:

cmas-core-cache cache-cluster-name Description: JBoss cache cluster

name

 StringType:

 YesRestart required:

 YesSystem:

 NoOptional:

 635a6de1-629a-Example value:

4129-8299-2d98633310f0

 6.4.0Since:

cmas-core-cache eviction.event.queue.size Description:

Type: Integer

 YesRestart required:

 YesSystem:

 NoOptional:

 200000Example value:

 6.4.0Since:

238 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-cache eviction.max.nodes Description:

Type: Integer

 YesRestart required:

 YesSystem:

 NoOptional:

 100000Example value:

 6.4.0Since:

cmas-core-cache eviction.wakeup.interval Description:

Type: Integer

 YesRestart required:

 YesSystem:

 NoOptional:

 3000Example value:

 6.4.0Since:

cmas-core-index-common big.task.minimum.size Description: How many parts task

at least should have to be

handled by indexer with low

priority.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 15 (default)Example value:

 6.8.3Since:

cmas-core-index-common disable.admin.task.auto.commit Description: All tasks created for

index update will be automatically

executed right after creation.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.6.1Since:

cmas-core-index-common index.attachment Description: Describes if content

of attachments is indexed.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 trueExample value:

 6.4.3Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 239

Module Property Explanation

cmas-core-index-common index.history Description: Describes if unit and

ticket history are indexed.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.1.0Since:

cmas-core-index-common index.status Description: Status of the

indexer, possible values RED,

YELLOW, GREEN, will be

displayed in the Admin-Tool.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 GREENExample value:

 6.6.1Since:

cmas-core-index-common index.task.worker.threads Description: How many threads

will be used to execute batch

index tasks (synchronization,

administrative, and repair tasks).

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 1 (default) (weExample value:

recommend to use a value not

larger than 2)

 6.6.14, 6.7.3Since:

cmas-core-index-common index.version.current Description: Holds information

about current (possibly old) index

version.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 1 (default)Example value:

 6.7.0Since:

240 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-index-common index.version.newest Description: Holds information

about which index version is

considered newest.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 1 (default)Example value:

 6.7.0Since:

cmas-core-index-common indexed.assets.per.thread.in.me

mory

Description: How many assets

should be loaded into memory at

once during indexing per one

thread.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 200 (default)Example value:

 6.8.0Since:

cmas-core-index-common indexed.engineers.per.thread.in.

memory

Description: How many

engineers should be loaded into

memory at once during indexing

per one thread.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 300 (default)Example value:

 6.6.14, 6.7.3Since:

cmas-core-index-common indexed.tickets.per.thread.in.me

mory

Description: How many tickets

should be loaded into memory at

once during indexing per one

thread.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 100 (default)Example value:

 6.6.14, 6.7.3Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 241

Module Property Explanation

cmas-core-index-common indexed.units.per.thread.in.memo

ry

Description: How many units

should be loaded into memory at

once during indexing per one

thread.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 200 (default)Example value:

 6.6.14, 6.7.3Since:

cmas-core-index-common synchronize.master.address Description: Value of -Dcmas.http

 informing how to.host.port

connect to indexing master

server. Default null. Since 6.6.17

this value is configurable in setup

to designate initial indexing

master server. Please note that

changing this value is only

allowed when all cluster nodes

index changes receivers are

stopped.

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 127.0.0.1:80Example value:

 6.6.0Since:

cmas-core-index-common synchronize.master.security.toke

n

Description: The password for

accessing the index snapshot via

URL, e.g. for index

synchronizaton or for back-ups.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 tokenExample value:

 6.6.0Since:

242 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-index-common synchronize.master.security.user Description: The user name for

accessing the index snapshot via

URL, e.g. for index

synchronizaton or for back-ups.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 userExample value:

 6.6.0Since:

cmas-core-index-common synchronize.master.timeout.minu

tes

Description: How much time

master server may constantly fail

until new master gets elected

with index fix procedure. Default

5. Since 6.6.17 this value is

configurable in setup where zero

means that master server will

never change (failover

mechanism is off).

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 5Example value:

 6.6.0Since:

cmas-core-index-common synchronize.megabits.per.second Description: How much

bandwidth can master server

consume to transfer index

changes to all slave servers.

Default 85. Please do not use all

available bandwidth to transfer

index changes between hosts.

This will most probably partition

cluster as some subsystems will

not be able to communicate.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 85Example value:

 6.6.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 243

Module Property Explanation

cmas-core-index-common synchronize.sleep.millis Description: How often each

slave server polls master server

for index changes. Default 1000.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 1000Example value:

 6.6.0Since:

cmas-core-security admin.email Description: The e-mail address

of the ConSol*CM administrator.

The value which you have

entered during system set-up is

used initially.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 maz@consol.deExample value:

 6.0Since:

cmas-core-security admin.login Description: The name of the

ConSol*CM administrator. The

value which you have entered

during system set-up is used

initially.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 adminExample value:

 6.0Since:

cmas-core-security authentication.method Description: User authentication

method (internal CM database or

LDAP authentication). Allowed

values are or .LDAP DATABASE

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 DATABASEExample value:

 6.0Since:

244 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-security contact.authentication.method

 only version 6.9 and higher

Description: Indicates contact

authentication method, where

possible values are DATABASE

or or or LDAP LDAP,DATABASE

DATABASE,LDAP.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 6.9.3.0Since:

cmas-core-security contact.inherit.permissions.only.t

o.own.customer.group

 only version 6.9 and higher

Description: Indicates whether

authenticated contact inherits all

customer group permissions from

representing engineer (false) or

only permission to own customer

group (true).

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 6.9.2.3Since:

cmas-core-security kerberos.v5.enabled Description: Flag which indicates

whether SSO via Kerberos is

enabled.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 false (default ifExample value:

Kerberos has not been enabled

during system set-up)

 6.2.0Since:

cmas-core-security kerberos.v5.username.regex Description: Regular expression

used for mapping Kerberos

principal to CM user login.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 (.*)@.*Example value:

 6.2.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 245

Module Property Explanation

cmas-core-security ldap.authentication Description: Authentication

method used when using LDAP

authentication.

 StringType:

 YesRestart required:

 YesSystem:

 NoOptional:

 simpleExample value:

 6.0Since:

cmas-core-security ldap.basedn Description: Base DN used for

looking up LDAP user accounts

when using LDAP authentication.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 OU=accounts,DExample value:

C=consol,DC=de

 6.0Since:

cmas-core-security ldap.contact.name.basedn

 only version 6.9 and higher

Description: Base path to search

for contact DN by LDAP ID (e.g.

ou=accounts,dc=consol,dc=de).

 StringType:

 NoRestart required:

 NoSystem:

 YesOptional:

 6.9.3.0Since:

cmas-core-security ldap.contact.name.password

 only version 6.9 and higher

Description: Password to lookup

contact DN by LDAP ID. If not

set, anonymous account is used.

 StringType:

 NoRestart required:

 NoSystem:

 YesOptional:

 6.9.3.0Since:

246 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-security ldap.contact.name.providerurl

 only version 6.9 and higher

Description: Address of the LDAP

server (ldap[s]://host:port).

 StringType:

 NoRestart required:

 NoSystem:

 YesOptional:

 6.9.3.0Since:

cmas-core-security ldap.contact.name.searchattr

 only version 6.9 and higher

Description: Attribute to search

for contact DN by LDAP ID (e.g.

uid).

 StringType:

 NoRestart required:

 NoSystem:

 YesOptional:

 6.9.3.0Since:

cmas-core-security ldap.contact.name.userdn

 only version 6.9 and higher

Description: User DN to lookup

contact DN by LDAP ID. If not

set, anonymous account is used.

 StringType:

 NoRestart required:

 NoSystem:

 YesOptional:

 6.9.3.0Since:

cmas-core-security ldap.initialcontextfactory Description: Class name for initial

context factory of LDAP

implementation when using

LDAP authentication. If it is not

set,

com.sun.jndi.ldap.LdapCtxFactor

y is being used as a value.

 StringType:

 YesRestart required:

 YesSystem:

 NoOptional:

 com.sun.jndi.ldaExample value:

p.LdapCtxFactory

 6.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 247

Module Property Explanation

cmas-core-security ldap.password Description: Password for

connecting to LDAP to lookup

users (when using LDAP

authentication). Only needed if

lookup cannot be done

anonymously.

 PasswordType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.1.2Since:

cmas-core-security ldap.providerurl Description: LDAP provider

(when using LDAP

authentication).

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 ldap://ldap.consoExample value:

l.de:389

 6.0Since:

cmas-core-security ldap.searchattr Description: Search attribute for

looking up LDAP entry connected

to CM6 login.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 uidExample value:

 6.0Since:

cmas-core-security ldap.userdn Description: LDAP user for

connecting to LDAP to lookup

users (when using LDAP

authentication). Only needed if

lookup cannot be done

anonymously.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.1.2Since:

248 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-server attachment.allowed.types Description: Comma-separated

list of allowed filename

extensions (if no value defined,

all file extensions are allowed).

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 txt,zip,docExample value:

 6.5.0Since:

cmas-core-server attachment.max.size Description: Maximum

attachment size in MB

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 100Example value:

 6.4.0Since:

cmas-core-server config.data.version Description:

Type: Integer

 NoRestart required:

 YesSystem:

 NoOptional:

 11Example value:

 6.0Since:

cmas-core-server defaultCommentClassName Description: Default text class

name for comments

 StringType:

 NoRestart required:

 NoSystem:

 YesOptional:

Example value:

 6.3.0Since:

cmas-core-server defaultIncommingMailClassName Description: Default text class

name for incoming mails

 StringType:

 NoRestart required:

 NoSystem:

 YesOptional:

Example value:

 6.3.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 249

Module Property Explanation

cmas-core-server defaultOutgoingMailClassName Description: Default text class

name for outgoing mails

 StringType:

 NoRestart required:

 NoSystem:

 YesOptional:

Example value:

 6.3.0Since:

cmas-core-server fetchSize.strategy Description: Strategy selected to

set fetch size on jdbc result sets.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 FetchSizePageBExample value:

asedStrategy,

FetchSizeThresholdStrategy,

FetchSizeFixedStrategy

 6.8.4.1Since:

cmas-core-server fetchSize.strategy.FetchSizeFixe

dStrategy.value

Description: Sets fetch size value

if selected strategy to set fetch

size is .FetchSizeFixedStrategy

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 150Example value:

 6.8.4.1Since:

cmas-core-server fetchSize.strategy.FetchSizePag

eBasedStrategy.limit

Description: Sets max fetch size

value if selected strategy to set

fetch size is FetchSizePageBase

.dStrategy

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 10000Example value:

 6.8.4.1Since:

250 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-server fetchSize.strategy.FetchSizeThre

sholdStrategy.value

Description: Sets fetch size

threshold border values if

selected strategy to set fetch size

is .FetchSizeThresholdStrategy

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 150,300,600,100Example value:

0

 6.8.4.1Since:

cmas-core-server last.config.change Description: Random UUID

created during last change in

config

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 2573c7b7-2bf5-4Example value:

7ff-b5a2-bad31951a266

 6.1.0, 6.2.1Since:

cmas-core-server ldap.certificate.basedn Description: Base DN for

certificates location in LDAP tree.

If not provided, ldap.basedn is

taken.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 OU=accounts,DExample value:

C=consol,DC=de

 6.8.4Since:

cmas-core-server ldap.certificate.content.attribute Description: LDAP attribute name

used where certificate data is

stored in LDAP tree. Default

value is: usercertificate.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 usercertificateExample value:

 6.8.4Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 251

Module Property Explanation

cmas-core-server ldap.certificate.password Description: LDAP Certificates

manager password. If not set,

ldap.password is taken.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.8.4Since:

cmas-core-server ldap.certificate.providerurl Description: LDAP Certificates

provider URL. If not set,

ldap.providerurl is taken.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 ldap://ldap.consoExample value:

l.de:389

 6.8.4Since:

cmas-core-server ldap.certificate.searchattr Description: LDAP attribute name

used to search for certificate in

LDAP tree. Default value is: mail.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 mailExample value:

 6.8.4Since:

cmas-core-server ldap.certificate.userdn Description: LDAP Certificates

manager DN. If not set,

ldap.userdn is taken.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.8.4Since:

252 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-server mail.notification.engineerChange Description: Flag if notification

mail should be sent when

engineer of ticket is changed.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 trueExample value:

 6.1.0Since:

cmas-core-server mail.notification.sender Description: address forFrom

notification mails when engineer

of ticket is changed. If not set, cm

 isas-core-security admin.email

used instead.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 cm6notification@Example value:

cm6installation

 6.6.3Since:

cmas-core-server mail.smtp.email Description: SMTP mail URL for

outgoing mails

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 smtp://mail.consExample value:

ol.de:25

 6.0Since:

cmas-core-server mail.smtp.envelopesender Description: Mail address used

as sender in SMTP envelope. If

not set, the address of theFrom:

mail is used.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 mysender@mydExample value:

omain.com

 6.5.7Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 253

Module Property Explanation

cmas-core-server max.licences.perUser Description: Sets max licenses

single user can use (e.g logging

in from different browsers). By

default this value is not restricted.

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 10Example value:

 6.8.4.5Since:

cmas-core-server monitoring.engineer.login

 only version 6.9 and higher

Description: Login of monitoring

engineer

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 bartekExample value:

 6.9.3.0Since:

cmas-core-server monitoring.unit.login

 only version 6.9 and higher

Description: Login of monitoring

unit

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 bartekExample value:

 6.9.3.0Since:

cmas-core-server server.session.archive.reaper.int

erval

Description: Server archived

sessions' reaper interval (in

seconds)

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 60Example value:

 6.7.1Since:

254 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-server server.session.archive.timeout Description: Server sessions

archive validity timeout (in days).

After this time session info is

removed from DB.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 31Example value:

 6.7.1Since:

cmas-core-server server.session.reaper.interval Description: Server inactive

(ended) sessions' reaper interval

(in seconds)

 IntegerType:

 Only SessionRestart required:

Service

 YesSystem:

 NoOptional:

 60Example value:

 6.6.1, 6.7.1Since:

cmas-core-server server.session.timeout Description: Server session

timeout (in seconds) for

connected clients. Each client

can overwrite this timeout with

custom value using its ID

(ADMIN_TOOL, WEB_CLIENT,

WORKFLOW_EDITOR, TRACK

(before 6.8 please use

PORTER), ETL, REST)

appended to property name, e.g.

server.session.timeout.ADMIN_T

OOL

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 1800Example value:

 6.6.1, 6.7.1Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 255

Module Property Explanation

cmas-core-server tickets.delete.size Description: Property that defines

a number of tickets deleted per

transaction. By default it is set to

10.

 IntegerType:

 Only SessionRestart required:

Service

 YesSystem:

 NoOptional:

 10Example value:

 6.8.1Since:

cmas-core-server ticket.delete.timeout Description: Transaction timeout

(in seconds) for deleting tickets

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 60Example value:

 6.1.3Since:

cmas-core-server unit.replace.batchSize Description: Describes number of

objects to be processed in unit

replace action.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 5Example value:

 6.8.2Since:

cmas-core-server unit.replace.timeout Description: Transaction timeout

(seconds) of unit replacement

action step.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 120Example value:

 6.8.2Since:

256 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-server unused.content.remover.cluster.n

ode.id

 only version 6.9 and higher

Description: Value of a

cmas.clusternode.id designating

node which will remove unused

ticket attachments and unit

content entries.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 1 (assumingExample value:

cluster node started with

-Dcmas.clusternode.id=1

parameter)

 6.9.0.0Since:

cmas-core-server unused.content.remover.enabled

 only version 6.9 and higher

Description: Flag whether unused

ticket attachments and unit

content entries removal should

take place.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 trueExample value:

 6.9.0.0Since:

cmas-core-server unused.content.remover.polling.

minutes

 only version 6.9 and higher

Description: How often unused

ticket attachments and unit

content entries should be

checked for removal.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 15Example value:

 6.9.0.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 257

Module Property Explanation

cmas-core-server unused.content.remover.ttl.minut

es

 only version 6.9 and higher

Description: Minimum interval

after which unused ticket

attachments and unit content

entries can be removed.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 1440Example value:

 6.9.0.0Since:

cmas-core-shared cluster.mode Description: Flag if CMAS is

running in cluster.

 BooleanType:

 YesRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.1.0Since:

cmas-core-shared data.directory Description: Directory for CMAS

data (e.g. index)

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 C:\Users\user\cmExample value:

as

 6.0Since:

cmas-dwh-server autocommit.cf.changes Description:

Type: Boolean

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.7.0Since:

258 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-dwh-server batch-commit-interval Description: Number of objects in

a JMS message. Higher value

means better transfer

performance and bigger memory

usage.

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 100Example value:

 6.0.0Since:

cmas-dwh-server dwh.mode Description: Current mode of

DWH data transfer. Possible

values are OFF, ADMIN, LIVE

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 OFFExample value:

 6.0.1Since:

cmas-dwh-server ignore-queues Description: By adding a comma

separated list of queue names it

is configured that tickets of these

queues are not transferred to the

DWH.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 QueueName1,QExample value:

ueueName2,QueueName3

 6.6.19Since:

6.8.1Removed in:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 259

Module Property Explanation

cmas-dwh-server is.cmrf.alive Description: As a starting point

time of sending last message to

CMRF should be used. If

response from CMRF is not

received after value (in seconds)

it should create a DWH operation

status with error message that

CMRF is down.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 1200Example value:

 6.7.0Since:

cmas-dwh-server java.naming.factory.initial Description: Factory class for

DWH context factory.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 org.jnp.interfacesExample value:

.NamingContextFactory

 6.0.1Since:

cmas-dwh-server java.naming.factory.url.pkgs Description:

Type: String

 NoRestart required:

 YesSystem:

 NoOptional:

 org.jboss.namingExample value:

:org.jnp.interfaces

 6.0.1Since:

cmas-dwh-server java.naming.provider.url Description: URL of naming

provider

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 localhostExample value:

 6.0.1Since:

260 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-dwh-server notification.error.description Description: Text for error mails

from DWH

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 Error occurredExample value:

 6.0.1Since:

cmas-dwh-server notification.error.from Description: address forFrom

error mails from DWH

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.0.1Since:

cmas-dwh-server notification.error.subject Description: Subject for error

mails from DWH

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 Error occurredExample value:

 6.0.1Since:

cmas-dwh-server notification.error.to Description: address for errorTo

mails from DWH

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 maz@consol.deExample value:

 6.0.1Since:

cmas-dwh-server notification.finished_successfully.

description

Description: Text for mails from

DWH when transfer finished

successfully.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 Transfer finishedExample value:

successfully

 6.0.1Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 261

Module Property Explanation

cmas-dwh-server notification.finished_successfully.

from

Description: address forFrom

mails from DWH when transfer

finished successfully.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.0.1Since:

cmas-dwh-server notification.finished_successfully.

subject

Description: Subject for mails

from DWH when transfer finished

successfully.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 Transfer finishedExample value:

successfully

 6.0.1Since:

cmas-dwh-server notification.finished_successfully.

to

Description: address for mailsTo

from DWH when transfer finished

successfully.

 YesRestart required:

 YesSystem:

 NoOptional:

 maz@consol.deExample value:

 6.0.1Since:

cmas-dwh-server notification.finished_unsuccessful

ly.description

Description: Text for mails from

DWH when transfer finished

unsuccessfully.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 Transfer finishedExample value:

unsuccessfully

 6.0.1Since:

262 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-dwh-server notification.finished_unsuccessful

ly.from

Description: address forFrom

mails from DWH when transfer

finished unsuccessfully.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.0.1Since:

cmas-dwh-server notification.finished_unsuccessful

ly.subject

Description: Subject for mails

from DWH when transfer finished

unsuccessfully.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 Transfer finishedExample value:

unsuccessfully

 6.0.1Since:

cmas-dwh-server notification.finished_unsuccessful

ly.to

Description: address for mailsTo

from DWH when transfer finished

unsuccessfully.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 maz@consol.deExample value:

 6.0.1Since:

cmas-dwh-server notification.host Description: Mail (SMTP) server

hostname for sending DWH mails

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 mail.consol.deExample value:

 6.1.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 263

Module Property Explanation

cmas-dwh-server notification.password Description: Password for

sending DWH mails (optional)

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.1.0Since:

cmas-dwh-server notification.port Description: SMTP port for

sending DWH mails

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 25Example value:

 6.1.0Since:

cmas-dwh-server notification.protocol Description: The protocol used

for sending emails from DWH.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 pop3\Example value:

cmas-dwh-server notification.username Description: (SMTP) User name

for sending DWH mails

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 mazExample value:

 6.1.0Since:

cmas-dwh-server skip-ticket Description: Tickets are not

transferred during

transfer/update.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.6.19Since:

 6.8.1Removed in:

264 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-dwh-server skip-ticket-history Description: History of ticket is

not transferred during

transfer/update.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.6.19Since:

 6.8.1Removed in:

cmas-dwh-server skip-unit Description: Units are not

transferred during

transfer/update.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.6.19Since:

6.8.1Removed in:

cmas-dwh-server skip-unit-history Description: History of unit is not

transferred during

transfer/update.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.6.19Since:

 6.8.1Removed in:

cmas-dwh-server split.history Description: Changes the SQL

that fetches the history for the

tickets during DWH transfer not

to all tickets at once but only for

one ticket per SQL.

 BooleanType:

 NoRestart required:

 YesSystem:

 YesOptional:

 falseExample value:

 6.8.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 265

Module Property Explanation

cmas-dwh-server unit.transfer.order Description: Define in which

order unit custom field groups

should be transferred to the

DWH.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 Example value: company;custom

er

 6.6.19Since:

 6.8.1Removed in:

cmas-esb-core esb.directory Description: Directory used by

ESB (Mule)

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 C:\Users\user\cmExample value:

as\mule

 6.0Since:

cmas-esb-mail mail.attachments.validation.info.s

ender

Description: Sets header ofFrom

attachments type error

notification mail. As a default the

e-mail address of the

administrator which you have

entered during system set-up is

used.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 admin@consolcExample value:

m.com

 6.7.5Since:

266 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-esb-mail mail.attachments.validation.info.s

ubject

Description: Sets subject of

attachments type error

notification mail.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 Mail was notExample value:

processed because its

attachments were rejected!!!

 6.7.5Since:

cmas-esb-mail mail.callname.pattern Description: Regular expression

for subject of incoming mails.

Available as

TICKET_NAME_PATTERN_FO

RMAT in incoming mail scripts.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 .*?Ticket\s+\((\S+Example value:

)\).*

 6.0Since:

cmas-esb-mail mail.cluster.node.id Description: Only the node

whose mail.cluster.node.id

equals cmas.clusternode.id will

start the Mule ESB mail services.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 unspecifiedExample value:

 6.6.5Since:

cmas-esb-mail mail.db.archive Description: If property is set to tr

, incoming e-mails areue

archived in the database.

 BooleanType:

 NoRestart required:

 YesSystem:

 YesOptional:

 false (default)Example value:

 6.8.5.5Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 267

Module Property Explanation

cmas-esb-mail mail.delete.read Description: Determines whether

CM deletes messages fetched

via IMAP(S). Setting value to true

will cause deletion of messages

after fetching. Default is to not

delete messages fetched via

IMAP(S). Note: Messages

fetched via POP3(S) will always

be deleted.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 trueExample value:

 6.7.3Since:

cmas-esb-mail mail.encryption Description: If property is set to tr

, the encrypt check box in theue

Ticket E-Mail Editor is checked

by default.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 true (default =Example value:

false)

 6.8.4.0Since:

268 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-esb-mail mail.incoming.uri Description: URL for incoming

mails

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 pop3://cm-incomiExample value:

ng-user:password@localhost:101

10

 6.0Since:

This value should not

be edited here using the

system properties

pop-up window, but the

mailboxes should be

configured using the file

card in theE-mail

Admin-Tool (see ConSo

l*CM Administrator

 sectionManual File

). UsingCard E-mail

this standard feature all

entries are controlled -

i.e. for each mailbox

which is added, CM

establishes a test

connection during

mailbox set-up. That

way it is not possible to

enter wrong values.

cmas-esb-mail mail.max.restarts Description: Maximum number of

mail service restarts before giving

up

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 3Example value:

 6.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 269

Module Property Explanation

cmas-esb-mail mail.mime.strict Description: If set to , mailfalse

addresses are not parsed for

strict MIME compliance. Default

is , which means check fortrue

strict MIME compliance.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.6.17, 6.7.3Since:

cmas-esb-mail mail.mule.service Description: address forFrom

mails sent by Mule service

 EMailType:

 NoRestart required:

 YesSystem:

 NoOptional:

 maz@consol.deExample value:

 6.0Since:

cmas-esb-mail mail.polling.interval Description: Mail polling interval

in ms

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 60000Example value:

 6.0Since:

cmas-esb-mail mail.process.error Description: address for errorTo

mails from Mule. As a default the

e-mail address of the

administrator which you have

entered during system set-up is

used.

 EMailType:

 NoRestart required:

 YesSystem:

 NoOptional:

 maz@consol.deExample value:

 6.0Since:

270 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-esb-mail mail.process.retry.attempts Description: Number of retries

when processing mail

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 3Example value:

 6.0.2Since:

cmas-esb-mail mail.process.timeout Description: Mail processing

timeout in seconds

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 60Example value:

 6.1.3Since:

cmas-esb-mail mail.redelivery.retry.count Description: Indicates the number

of retries of re-delivering an

e-mail from the CM system.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 3Example value:

 6.1.0Since:

cmas-setup-hibernate hibernate.dialect Description: The dialect used by

hibernate. Usually set during

initial setup (depending on the

database system).

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 org.hibernate.dialExample value:

ect.MySQL5InnoDBDialect

 6.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 271

Module Property Explanation

cmas-setup-manager initialized Description: Flag if CMAS is

initialized. If this value is missing

or not , setup will betrue

performed.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 trueExample value:

 6.0Since:

Be careful with using

this property!!! When

you set the value to fals

, the ConSol*CMe

server will perform the

system set-up at the

next start, i.e. all data of

the existing system is

lost, including system

properties!!!

cmas-setup-scene scene Description: Scene file which was

imported during setup (can be

empty).

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 vfszip:/P:/dist/tarExample value:

get/jboss/server/cmas/deploy/cm

-dist-6.5.1-SNAPSHOT.ear/APP-

INF/lib/dist-scene-6.5.1-SNAPSH

OT.jar/META-INF/cmas/scenes/h

elpdesk-sales_scene.jar/

 6.0Since:

272 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-workflow-engine jobExecutor.adminMail Description: Mail which will get

notified about job execution

problems (when retry counter is

exceeded).

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 admin@consol.dExample value:

e

 6.8.0Since:

cmas-workflow-engine jobExecutor.idleInterval.seconds Description: Determines how

often job executor thread will look

for new jobs to execute.

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 5 (default)Example value:

 6.8.0Since:

cmas-workflow-engine jobExecutor.jobMaxRetries Description:

Type: Integer

 NoRestart required:

 YesSystem:

 YesOptional:

 5 (default)Example value:

 6.8.0Since:

cmas-workflow-engine jobExecutor.jobMaxRetriesReach

edSubject

Description: (rev.54593)

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 Job max retriesExample value:

reached. Job was removed!!!

(default)

 6.8.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 273

Module Property Explanation

cmas-workflow-engine jobExecutor.lockTimeout.second

s

Description: How long the job can

be locked (marked for execution)

by job executor.

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 360 (default)Example value:

 6.8.0Since:

cmas-workflow-engine jobExecutor.lockingLimit Description: Number of job

locked at once (marked for

execution) by job executor thread

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 10 (default)Example value:

 6.8.0Since:

cmas-workflow-engine jobExecutor.mailFrom Description: Mail which will be set

as header during adminFrom

notifications.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 jobexecutor@coExample value:

nsol.de

 6.8.0Since:

cmas-workflow-engine jobExecutor.maxInactivityInterval

.minutes

Description: Number of minutes

of allowed job executor inactivity

(e.g. when it is blocked by long

timer execution). After this time

executors threads are restarted.

 IntegerType:

 NoRestart required:

 YesSystem:

 Yes. Default value isOptional:

set to 30 minutes.

 15 (default)Example value:

 6.9.2.0Since:

274 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-workflow-engine jobExecutor.threads Description: Number of job

execution threads

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 1 (default)Example value:

 6.8.0Since:

cmas-workflow-engine jobExecutor.timerRetryInterval.se

conds

Description: Determines how

long job executor thread will wait

after job execution error.

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 10 (default)Example value:

 6.8.0Since:

cmas-workflow-engine jobExecutor.txTimeout.seconds Description: Transaction timeout

used for job execution

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 60 (default)Example value:

 6.8.0Since:

cmweb-server-adapter checkUserOnlineIntervalInSecon

ds

Description: The interval in

seconds to check which users

are online (default 180sec =

3min).

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 180Example value:

 6.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 275

Module Property Explanation

cmweb-server-adapter cmoffice.enabled Description: Flag if CM/Office is

enabled.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.4.0Since:

cmweb-server-adapter commentRequiredForTicketCreat

ion

Description: Flag if comment is a

required field for ticket creation.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 true (default)Example value:

 6.2.0Since:

cmweb-server-adapter customizationVersion Description:

Type: String

 NoRestart required:

 YesSystem:

 NoOptional:

 cd58453e-f3cc-4Example value:

538-8030-d15e8796a4a7

 6.5.0Since:

276 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmweb-server-adapter data.optimization Description: Defines optimization

to be applied on response data.

So far, the following values are

supported (for setting more than

one value, separate values by '|'):

MINIFICATION and

COMPRESSION. MINIFICATION

minifies HTML data by e.g.

stripping whitespaces and

comments. COMPRESSION

applies gzip compression to

HTTP response. (Note: If you are

running in cluster mode and want

to test different configurations in

parallel, you can set different

values for each cluster node by

specifying property

data.optimization. tonodeId

override default property.)

 StringType:

 COMPRESSIORestart required:

N can be switched on/off without

restart, MINIFICATION requires

restart.

 YesSystem:

 YesOptional:

 MINIFICATION|CExample value:

OMPRESSION

cmweb-server-adapter defaultContentEntryClassName Description: Default text class for

new acims

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 default_classExample value:

 6.3.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 277

Module Property Explanation

cmweb-server-adapter defaultNumberOfCustomFieldsC

olumns

Description: Default number of

columns for custom fields

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 3Example value:

 6.2.0Since:

cmweb-server-adapter favoritesSizeLimit Description: Maximum number of

items in favorites list

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 10Example value:

 6.0Since:

cmweb-server-adapter globalSearchResultSizeLimit Description: Maximum number of

items in global (Q&E) search

result

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 10Example value:

 6.0Since:

cmweb-server-adapter helpFilePath Description: URL for online help.

If not empty, button isHelp

displayed in Web Client.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 http://www.consoExample value:

l.de

 6.2.1Since:

278 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmweb-server-adapter hideTicketSubject Description: If set to , tickettrue

subject is hidden.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.2.1Since:

cmweb-server-adapter mail.from Description: Use this address if

set instead of engineer e-mail

address during mail

conversation.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.1.2Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 279

Module Property Explanation

cmweb-server-adapter mail.reply.to Description: When set, Web

Client will display reply-to field on

mail send, prefilled with this

value.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.0.1Since:

Please see also ConSol

*CM Administrator

 section Manual Queue

.Administration

When you set the

REPLY TO address in

the outgoing e-mail

script, the mail.reply.to

system property must

not be set (because it

would overwrite the

configured value)! That

means when you use

one outgoing e-mail

script for a queue you

have to define outgoing

e-mail scripts for all

queues because the ma

 property canil.reply.to

no longer be used.

cmweb-server-adapter mailTemplateAboveQuotedText Description: Indicates behavior of

mail template in the Ticket E-Mail

Editor when another mail is

quoted, i.e. forwarded or replied

to.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.2.4Since:

280 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmweb-server-adapter maxSizePerPagemapInMegaByt

es

Description: Maximum size (in

MB) for each Wicket pagemap

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 15Example value:

 6.3.5Since:

cmweb-server-adapter pagemapLockDurationInSeconds Description: Number of seconds

to pass before pagemap is

considered to be locked for too

long.

 IntegerType:

 YesRestart required:

 YesSystem:

 YesOptional:

 60Example value:

 6.7.3Since:

cmweb-server-adapter postActivityExecutionScriptName Description: Defines the name for

the script which should be

executed after every workflow

activity (see ConSol*CM

 section Administrator Manual Ad

 min-Tool Scripts - Default

). If noWorkflow Activity Script

script should be executed, leave

the value empty.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 postActivityExecExample value:

utionHandler

 6.2.0Since:

cmweb-server-adapter queuesExcludedFromGS Description: Comma-separated

list of queue names which are

excluded from global search.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 281

Module Property Explanation

cmweb-server-adapter rememberMeLifetimeInMinutes Description: Lifetime for rememb

 in minuteser me

 IntegerType:

 YesRestart required:

 YesSystem:

 NoOptional:

 1440Example value:

 6.0Since:

cmweb-server-adapter request.scope.transaction Description: It allows to disable

request scope transaction. By

default one transaction is used

per request. Setting this property

to there will cause onefalse

transaction per service method

invocation.

 BooleanType:

 YesRestart required:

 YesSystem:

 YesOptional:

 trueExample value:

 6.8.1Since:

cmweb-server-adapter searchPageSize Description: Default page size for

search results

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 20Example value:

 6.0Since:

cmweb-server-adapter searchPageSizeOptions Description: Options for page

size for search results

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 10|20|30|40|50|7Example value:

5|100

 6.0Since:

282 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmweb-server-adapter serverPoolingInterval Description:

Type: Integer

 NoRestart required:

 YesSystem:

 NoOptional:

 5Example value:

 6.1.0Since:

cmweb-server-adapter supportEmail Description:

Type: String

 NoRestart required:

 YesSystem:

 YesOptional:

 6.0Since:

cmweb-server-adapter themeOverlay Description: Name of used theme

overlay

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 kyoEURExample value:

 6.0Since:

cmweb-server-adapter ticketListRefreshIntervalInSecon

ds

Description: Refresh interval for

ticket list (in seconds)

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 180Example value:

 6.0Since:

cmweb-server-adapter ticketListSizeLimit Description: Maximum number of

tickets in ticket list

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 100Example value:

 6.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 283

Module Property Explanation

cmweb-server-adapter unitIndexSearchResultSizeLimit Description: Maximum number of

units in unit search result (e.g.

when searching for contact)

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 5Example value:

 6.0Since:

cmweb-server-adapter urlLogoutPath Description: URL which is used

when user logs out. (If no value is

set, logout leads to login-mask.)

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 http://intranet.conExample value:

sol.de

 6.3.1Since:

cmweb-server-adapter webSessionTimeoutInMinutes Description: Session timeout in

minutes

 IntegerType:

 YesRestart required:

 YesSystem:

 NoOptional:

 180Example value:

 6.7.1Removed in:

 server.session.timeReplaced by:

out

cmweb-server-adapter wicketAjaxRequestHeaderFilterE

nabled

Description: This enables filter for

Wicket AJAX requests, coming

from stale pages with Wicket 1.4

scripting (CM6 pre-6.8.0), after

update to CM6 post-6.8.0.

 BooleanType:

 YesRestart required:

 YesSystem:

 YesOptional:

 falseExample value:

 6.8.1Since:

284 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-workflow-jbpm fetchLock.interval Description:

Type: Integer

 NoRestart required:

 YesSystem:

 NoOptional:

 5000Example value:

 6.8.0Removed in:

cmas-workflow-jbpm fetchLock.timeout Description:

Type: Integer

 NoRestart required:

 YesSystem:

 NoOptional:

 15000Example value:

 6.8.0Removed in:

cmas-workflow-jbpm jobExecutor.idleInterval Description:

Type: Integer

 NoRestart required:

 YesSystem:

 NoOptional:

 45000Example value:

 6.8.0 Removed in:

jobExecutor.idleIntReplaced by:

erval.seconds

cmas-workflow-jbpm jobExecutor.jobExecuteRetryNu

mber

Description:

Type: Integer

 NoRestart required:

 YesSystem:

 NoOptional:

 5Example value:

 6.8.0Removed in:

 jobExecutor.jobMaReplaced by:

xRetries

cmas-workflow-jbpm jobExecutor.timerRetryInterval Description:

Type: Integer

 NoRestart required:

 YesSystem:

 NoOptional:

 10000Example value:

 6.8.0Removed in:

 jobExecutor.timerRReplaced by:

etryInterval.seconds

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 285

Module Property Explanation

cmas-workflow-jbpm mail.sender.address Description: address forFrom

mails from the workflow engine

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 maz@consol.deExample value:

 6.8.0Removed in:

 jobExecutor.mailFrReplaced by:

om

cmas-workflow-jbpm outdated.lock.age Description:

Type: Integer

 NoRestart required:

 YesSystem:

 NoOptional:

 60000Example value:

6.8.0Removed in:

jobExecutor.lockTiReplaced by:

meout.seconds

cmas-workflow-jbpm refreshTimeInCaseOfConcurrent

RememberMeRequests

Description: It sets the refresh

time (in seconds) after which

page will be reloaded in case of

concurrent requestremember me

s. This feature prevents one user

from occupying many licenses.

Please increase that time if

sessions are still occupying.

 IntegerType:

 YesRestart required:

 YesSystem:

 YesOptional:

 5Example value:

 6.8.2Since:

286 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

11.2 System Properties Ordered by Property Name

Module Property Explanation

cmas-core-security admin.email Description: The e-mail address

of the ConSol*CM administrator.

The value which you have

entered during system set-up is

used initially.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 maz@consol.deExample value:

 6.0Since:

cmas-core-security admin.login Description: The name of the

ConSol*CM administrator. The

value which you have entered

during system set-up is used

initially.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 adminExample value:

 6.0Since:

cmas-app-admin-tool admin.tool.session.check.interval Description: Admin Tool inactive

(ended) sessions check time

interval (in seconds)

 IntegerType:

 YesRestart required:

 YesSystem:

 NoOptional:

 30Example value:

 6.7.5Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 287

Module Property Explanation

cmas-core-server attachment.allowed.types Description: Comma-separated

list of allowed filename

extensions (if no value defined,

all file extensions are allowed).

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 txt,zip,docExample value:

 6.5.0Since:

cmas-core-server attachment.max.size Description: Maximum

attachment size in MB

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 100Example value:

 6.4.0Since:

cmas-core-security authentication.method Description: User authentication

method (internal CM database or

LDAP authentication). Allowed

values are LDAP or DATABASE

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 DATABASEExample value:

 6.0Since:

cmas-dwh-server autocommit.cf.changes Description:

Type: Boolean

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.7.0Since:

288 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-app-admin-tool autocomplete.enabled

 only version 6.9 and higher

Description: If the flag is missing

or its value is , then thefalse Auto

tab is hidden in complete address

AT.

 BooleanType:

 NoRestart required:

 YesSystem:

 YesOptional:

 trueExample value:

 6.9.2.0Since:

cmas-dwh-server batch-commit-interval Description: Number of objects in

a JMS message. Higher value

means better transfer

performance and bigger memory

usage.

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 100Example value:

 6.0.0Since:

cmas-core-index-common big.task.minimum.size Description: How many parts task

at least should have to be

handled by indexer with low

priority.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 15 (default)Example value:

 6.8.3Since:

cmas-core-cache cache-cluster-name Description: JBoss cache cluster

name

 StringType:

 YesRestart required:

 YesSystem:

 NoOptional:

 635a6de1-629a-Example value:

4129-8299-2d98633310f0

 6.4.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 289

Module Property Explanation

cmweb-server-adapter checkUserOnlineIntervalInSecon

ds

Description: The interval in

seconds to check which users

are online (default 180sec =

3min).

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 180Example value:

 6.0Since:

cmas-core-shared cluster.mode Description: Flag if CMAS is

running in cluster.

 BooleanType:

 YesRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.1.0Since:

cmweb-server-adapter cmoffice.enabled Description: Flag if CM/Office is

enabled.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.4.0Since:

cmweb-server-adapter commentRequiredForTicketCreat

ion

Description: Flag if comment is a

required field for ticket creation.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 true (default)Example value:

 6.2.0Since:

cmas-core-server config.data.version Description:

Type: Integer

 NoRestart required:

 YesSystem:

 NoOptional:

 11Example value:

 6.0Since:

290 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-security contact.authentication.method

 only version 6.9 and higher

Description: Indicates contact

authentication method, where

possible values are DATABASE

or or or LDAP LDAP,DATABASE

 DATABASE,LDAP.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 6.9.3.0Since:

cmas-core-security contact.inherit.permissions.only.t

o.own.customer.group

 only version 6.9 and higher

Description: Indicates whether

authenticated contact inherits all

customer group permissions from

representing engineer (false) or

only permission to own customer

group (true).

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 6.9.2.3Since:

cmweb-server-adapter customizationVersion Description:

Type: String

 NoRestart required:

 YesSystem:

 NoOptional:

 cd58453e-f3cc-4Example value:

538-8030-d15e8796a4a7

 6.5.0Since:

cmas-core-shared data.directory Description: Directory for CMAS

data (e.g. index)

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 C:\Users\user\cmExample value:

as

 6.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 291

Module Property Explanation

cmweb-server-adapter data.optimization Description: Defines optimization

to be applied on response data.

So far, the following values are

supported (for setting more than

one value, separate values by '|'):

MINIFICATION and

COMPRESSION. MINIFICATION

minifies HTML data by e.g.

stripping whitespaces and

comments. COMPRESSION

applies gzip compression to

HTTP response. (Note: If you are

running in cluster mode and want

to test different configurations in

parallel, you can set different

values for each cluster node by

specifying property

data.optimization. tonodeId

override default property.)

 StringType:

 COMPRESSIORestart required:

N can be switched on/off without

restart, MINIFICATION requires

restart

 YesSystem:

 YesOptional:

 MINIFICATION|CExample value:

OMPRESSION

cmas-core-server defaultCommentClassName Description: Default text class

name for comments

 StringType:

 NoRestart required:

 NoSystem:

 YesOptional:

Example value:

 6.3.0Since:

292 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmweb-server-adapter defaultContentEntryClassName Description: Default text class for

new acims

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 default_classExample value:

 6.3.0Since:

cmas-core-server defaultIncommingMailClassName Description: Default text class

name for incoming mails

 StringType:

 NoRestart required:

 NoSystem:

 YesOptional:

Example value:

 6.3.0Since:

cmweb-server-adapter defaultNumberOfCustomFieldsC

olumns

Description: Default number of

columns for custom fields

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 3Example value:

 6.2.0Since:

cmas-core-server defaultOutgoingMailClassName Description: Default text class

name for outgoing mails

 StringType:

 NoRestart required:

 NoSystem:

 YesOptional:

Example value:

 6.3.0Since:

cmas-core-index-common disable.admin.task.auto.commit Description: All tasks created for

index update will be automatically

executed right after creation.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.6.1Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 293

Module Property Explanation

cmas-dwh-server dwh.mode Description: Current mode of

DWH data transfer. Possible

values are OFF, ADMIN, LIVE

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 OFFExample value:

 6.0.1Since:

cmas-esb-core esb.directory Description: Directory used by

ESB (Mule)

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 C:\Users\user\cmExample value:

as\mule

 6.0Since:

cmas-core-cache eviction.event.queue.size Description:

Type: Integer

 YesRestart required:

 YesSystem:

 NoOptional:

 200000Example value:

 6.4.0Since:

cmas-core-cache eviction.max.nodes Description:

Type: Integer

 YesRestart required:

 YesSystem:

 NoOptional:

 100000Example value:

 6.4.0Since:

cmas-core-cache eviction.wakeup.interval Description:

Type: Integer

 YesRestart required:

 YesSystem:

 NoOptional:

 3000Example value:

 6.4.0Since:

294 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmweb-server-adapter favoritesSizeLimit Description: Maximum number of

items in favorites list

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 10Example value:

 6.0Since:

cmas-workflow-jbpm fetchLock.interval Description:

Type: Integer

 NoRestart required:

 YesSystem:

 NoOptional:

 5000Example value:

 6.8.0Removed in:

cmas-workflow-jbpm fetchLock.timeout Description:

Type: Integer

 NoRestart required:

 YesSystem:

 NoOptional:

 15000Example value:

 6.8.0Removed in:

cmas-core-server fetchSize.strategy Description: Strategy selected to

set fetch size on jdbc result sets.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 FetchSizePageBExample value:

asedStrategy,

FetchSizeThresholdStrategy,

FetchSizeFixedStrategy

 6.8.4.1Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 295

Module Property Explanation

cmas-core-server fetchSize.strategy.FetchSizeFixe

dStrategy.value

Description: Sets fetch size value

if selected strategy to set fetch

size is .FetchSizeFixedStrategy

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 150Example value:

 6.8.4.1Since:

cmas-core-server fetchSize.strategy.FetchSizePag

eBasedStrategy.limit

Description: Sets max fetch size

value if selected strategy to set

fetch size is FetchSizePageBase

.dStrategy

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 10000Example value:

 6.8.4.1Since:

cmas-core-server fetchSize.strategy.FetchSizeThre

sholdStrategy.value

Description: Sets fetch size

threshold border values if

selected strategy to set fetch size

is .FetchSizeThresholdStrategy

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 150,300,600,100Example value:

0

 6.8.4.1Since:

cmweb-server-adapter globalSearchResultSizeLimit Description: Maximum number of

items in global (Q&E) search

result

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 10Example value:

 6.0Since:

296 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmweb-server-adapter helpFilePath Description: URL for online help.

If not empty, button isHelp

displayed in Web Client.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 http://www.consoExample value:

l.de

 6.2.1Since:

cmas-setup-hibernate hibernate.dialect Description: The dialect used by

hibernate. Usually set during

initial setup (depending on the

database system).

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 org.hibernate.dialExample value:

ect.MySQL5InnoDBDialect

 6.0Since:

cmweb-server-adapter hideTicketSubject Description: If set to , tickettrue

subject is hidden.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.2.1Since:

cmas-dwh-server ignore-queues Description: By adding a comma

separated list of queue names it

is configured that tickets of these

queues are not transferred to the

DWH.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 QueueName1,QExample value:

ueueName2,QueueName3

 6.6.19Since:

6.8.1Removed in:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 297

Module Property Explanation

cmas-core-index-common index.attachment Description: Describes if content

of attachments is indexed.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 trueExample value:

 6.4.3Since:

cmas-core-index-common index.history Description: Describes if unit and

ticket history are indexed.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.1.0Since:

cmas-core-index-common index.status Description: Status of the

indexer, possible values RED,

YELLOW, GREEN, will be

displayed in the Admin-Tool.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 GREENExample value:

 6.6.1Since:

cmas-core-index-common index.task.worker.threads Description: How many threads

will be used to execute batch

index tasks (synchronization,

administrative, and repair tasks).

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 1 (default) (weExample value:

recommend to use a value not

larger than 2)

 6.6.14, 6.7.3Since:

298 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-index-common index.version.current Description: Holds information

about current (possibly old) index

version.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 1 (default)Example value:

 6.7.0Since:

cmas-core-index-common index.version.newest Description: Holds information

about which index version is

considered newest.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 1 (default)Example value:

 6.7.0Since:

cmas-core-index-common indexed.assets.per.thread.in.me

mory

Description: How many assets

should be loaded into memory at

once during indexing per one

thread.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 200 (default)Example value:

 6.8.0Since:

cmas-core-index-common indexed.engineers.per.thread.in.

memory

Description: How many

engineers should be loaded into

memory at once during indexing

per one thread.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 300 (default)Example value:

 6.6.14, 6.7.3Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 299

Module Property Explanation

cmas-core-index-common indexed.tickets.per.thread.in.me

mory

Description: How many tickets

should be loaded into memory at

once during indexing per one

thread.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 100 (default)Example value:

 6.6.14, 6.7.3Since:

cmas-core-index-common indexed.units.per.thread.in.memo

ry

Description: How many units

should be loaded into memory at

once during indexing per one

thread.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 200 (default)Example value:

 6.6.14, 6.7.3Since:

300 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-setup-manager initialized Description: Flag if CMAS is

initialized. If this value is missing

or not , setup will betrue

performed.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 trueExample value:

 6.0Since:

Be careful with using

this property!!! When

you set the value to fals

, the ConSol*CMe

server will perform the

system set-up at the

next start, i.e. all data of

the existing system is

lost, including system

properties!!!

cmas-dwh-server is.cmrf.alive Description: As a starting point

time of sending last message to

CMRF should be used. If

response from CMRF is not

received after value (in seconds)

it should create a DWH operation

status with error message that

CMRF is down.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 1200Example value:

 6.7.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 301

Module Property Explanation

cmas-dwh-server java.naming.factory.initial Description: Factory class for

DWH context factory.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 org.jnp.interfacesExample value:

.NamingContextFactory

 6.0.1Since:

cmas-dwh-server java.naming.factory.url.pkgs Description:

Type: String

 NoRestart required:

 YesSystem:

 NoOptional:

 org.jboss.namingExample value:

:org.jnp.interfaces

 6.0.1Since:

cmas-dwh-server java.naming.provider.url Description: URL of naming

provider

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 localhostExample value:

 6.0.1Since:

cmas-workflow-engine jobExecutor.adminMail Description: Mail which will get

notified about job execution

problems (when retry counter is

exceeded).

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 admin@consol.dExample value:

e

 6.8.0Since:

302 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-workflow-jbpm jobExecutor.idleInterval Description:

Type: Integer

 NoRestart required:

 YesSystem:

 NoOptional:

 45000Example value:

 6.8.0 Removed in:

jobExecutor.idleIntReplaced by:

erval.seconds

cmas-workflow-engine jobExecutor.idleInterval.seconds Description: Determines how

often job executor thread will look

for new jobs to execute.

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 5 (default)Example value:

 6.8.0Since:

cmas-workflow-jbpm jobExecutor.jobExecuteRetryNu

mber

Description:

Type: Integer

 NoRestart required:

 YesSystem:

 NoOptional:

 5Example value:

 6.8.0Removed in:

 jobExecutor.jobMaReplaced by:

xRetries

cmas-workflow-engine jobExecutor.jobMaxRetries Description:

Type: Integer

 NoRestart required:

 YesSystem:

 YesOptional:

 5 (default)Example value:

 6.8.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 303

Module Property Explanation

cmas-workflow-engine jobExecutor.jobMaxRetriesReach

edSubject

Description: (rev.54593)

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 Job max retriesExample value:

reached. Job was removed!!!

(default)

 6.8.0Since:

cmas-workflow-engine jobExecutor.lockingLimit Description: Number of job

locked at once (marked for

execution) by job executor thread

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 10 (default)Example value:

 6.8.0Since:

cmas-workflow-engine jobExecutor.lockTimeout.second

s

Description: How long the job can

be locked (marked for execution)

by job executor.

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 360 (default)Example value:

 6.8.0Since:

cmas-workflow-engine jobExecutor.mailFrom Description: Mail which will be set

as header during adminFrom

notifications.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 jobexecutor@coExample value:

nsol.de

 6.8.0Since:

304 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-workflow-engine jobExecutor.maxInactivityInterval

.minutes

Description: Number of minutes

of allowed job executor inactivity

(e.g. when it is blocked by long

timer execution). After this time

executors threads are restarted.

 IntegerType:

 NoRestart required:

 YesSystem:

 Yes. Default value isOptional:

set to 30 minutes.

 15 (default)Example value:

 6.9.2.0Since:

cmas-workflow-engine jobExecutor.threads Description: Number of job

execution threads

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 1 (default)Example value:

 6.8.0Since:

cmas-workflow-jbpm jobExecutor.timerRetryInterval Description:

Type: Integer

 NoRestart required:

 YesSystem:

 NoOptional:

 10000Example value:

 6.8.0Removed in:

 jobExecutor.timerRReplaced by:

etryInterval.seconds

cmas-workflow-engine jobExecutor.timerRetryInterval.se

conds

Description: Determines how

long job executor thread will wait

after job execution error.

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 10 (default)Example value:

 6.8.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 305

Module Property Explanation

cmas-workflow-engine jobExecutor.txTimeout.seconds Description: Transaction timeout

used for job execution

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 60 (default)Example value:

 6.8.0Since:

cmas-core-security kerberos.v5.enabled Description: Flag which indicates

whether SSO via Kerberos is

enabled.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 false (default ifExample value:

Kerberos has not been enabled

during system set-up)

 6.2.0Since:

cmas-core-security kerberos.v5.username.regex Description: Regular expression

used for mapping Kerberos

principal to CM user login.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 (.*)@.*Example value:

 6.2.0Since:

cmas-core-server last.config.change Description: Random UUID

created during last change in

config

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 2573c7b7-2bf5-4Example value:

7ff-b5a2-bad31951a266

 6.1.0, 6.2.1Since:

306 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-security ldap.authentication Description: Authentication

method used when using LDAP

authentication.

 StringType:

 YesRestart required:

 YesSystem:

 NoOptional:

 simpleExample value:

 6.0Since:

cmas-core-security ldap.basedn Description: Base DN used for

looking up LDAP user accounts

when using LDAP authentication.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 OU=accounts,DExample value:

C=consol,DC=de

 6.0Since:

cmas-core-server ldap.certificate.basedn Description: Base DN for

certificates location in LDAP tree.

If not provided, ldap.basedn is

taken.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 OU=accounts,DExample value:

C=consol,DC=de

 6.8.4Since:

cmas-core-server ldap.certificate.content.attribute Description: LDAP attribute name

used where certificate data is

stored in LDAP tree. Default

value is: usercertificate.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 usercertificateExample value:

 6.8.4Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 307

Module Property Explanation

cmas-core-server ldap.certificate.password Description: LDAP Certificates

manager password. If not set,

ldap.password is taken.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.8.4Since:

cmas-core-server ldap.certificate.providerurl Description: LDAP Certificates

provider URL. If not set,

ldap.providerurl is taken.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 ldap://ldap.consoExample value:

l.de:389

 6.8.4Since:

cmas-core-server ldap.certificate.searchattr Description: LDAP attribute name

used to search for certificate in

LDAP tree. Default value is: mail.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 mailExample value:

 6.8.4Since:

cmas-core-server ldap.certificate.userdn Description: LDAP Certificates

manager DN. If not set,

ldap.userdn is taken.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.8.4Since:

308 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-security ldap.contact.name.basedn

 only version 6.9 and higher

Description: Base path to search

for contact DN by LDAP ID (e.g.

ou=accounts,dc=consol,dc=de)

 StringType:

 NoRestart required:

 NoSystem:

 YesOptional:

 6.9.3.0Since:

cmas-core-security ldap.contact.name.password

 only version 6.9 and higher

Description: Password to lookup

contact DN by LDAP ID. If not

set, anonymous account is used.

 StringType:

 NoRestart required:

 NoSystem:

 YesOptional:

 6.9.3.0Since:

cmas-core-security ldap.contact.name.providerurl

 only version 6.9 and higher

Description: Address of the LDAP

server (ldap[s]://host:port)

 StringType:

 NoRestart required:

 NoSystem:

 YesOptional:

 6.9.3.0Since:

cmas-core-security ldap.contact.name.searchattr

 only version 6.9 and higher

Description: Attribute to search

for contact DN by LDAP ID (e.g.

uid)

 StringType:

 NoRestart required:

 NoSystem:

 YesOptional:

 6.9.3.0Since:

cmas-core-security ldap.contact.name.userdn

 only version 6.9 and higher

Description: User DN to lookup

contact DN by LDAP ID. If not

set, anonymous account is used.

 StringType:

 NoRestart required:

 NoSystem:

 YesOptional:

 6.9.3.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 309

Module Property Explanation

cmas-core-security ldap.initialcontextfactory Description: Class name for initial

context factory of LDAP

implementation when using

LDAP authentication. If it is not

set,

com.sun.jndi.ldap.LdapCtxFactor

y is being used as value.

 StringType:

 YesRestart required:

 YesSystem:

 NoOptional:

 com.sun.jndi.ldaExample value:

p.LdapCtxFactory

 6.0Since:

cmas-core-security ldap.password Description: Password for

connecting to LDAP to lookup

users (when using LDAP

authentication). Only needed if

lookup cannot be done

anonymously.

 PasswordType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.1.2Since:

cmas-core-security ldap.providerurl Description: LDAP provider

(when using LDAP

authentication).

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 ldap://ldap.consoExample value:

l.de:389

 6.0Since:

310 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-security ldap.searchattr Description: Search attribute for

looking up LDAP entry connected

to CM6 login.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 uidExample value:

 6.0Since:

cmas-core-security ldap.userdn Description: LDAP user for

connecting to LDAP to lookup

users (when using LDAP

authentication). Only needed if

lookup cannot be done

anonymously.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.1.2Since:

cmas-esb-mail mail.attachments.validation.info.s

ender

Description: Sets header ofFrom

attachments type error

notification mail. As a default the

e-mail address of the

administrator which you have

entered during system set-up is

used.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 admin@consolcExample value:

m.com

 6.7.5Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 311

Module Property Explanation

cmas-esb-mail mail.attachments.validation.info.s

ubject

Description: Sets subject of

attachments type error

notification mail.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 Mail was notExample value:

processed because its

attachments were rejected!!!

 6.7.5Since:

cmas-esb-mail mail.callname.pattern Description: Regular expression

for subject of incoming mails.

Available as

TICKET_NAME_PATTERN_FO

RMAT in incoming mail scripts.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 .*?Ticket\s+\((\S+Example value:

)\).*

 6.0Since:

cmas-esb-mail mail.cluster.node.id Description: Only the node

whose mail.cluster.node.id

equals cmas.clusternode.id will

start the Mule ESB mail services.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 unspecifiedExample value:

 6.6.5Since:

cmas-esb-mail mail.db.archive Description: If property is set to tr

, incoming e-mails areue

archived in the database.

 BooleanType:

 NoRestart required:

 YesSystem:

 YesOptional:

 false (default)Example value:

 6.8.5.5Since:

312 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-esb-mail mail.delete.read Description: Determines whether

CM deletes messages fetched

via IMAP(S). Setting value to true

will cause deletion of messages

after fetching. Default is to not

delete messages fetched via

IMAP(S). Note: Messages

fetched via POP3(S) will always

be deleted.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 trueExample value:

 6.7.3Since:

cmas-esb-mail mail.encryption Description: If property is set to tr

, the encrypt check box in theue

Ticket E-Mail Editor is checked

by default.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 true (default =Example value:

false)

 6.8.4.0Since:

cmweb-server-adapter mail.from Description: Use this address if

set instead of engineer e-mail

address during mail

conversation.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.1.2Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 313

Module Property Explanation

cmas-esb-mail mail.incoming.uri Description: URL for incoming

mails

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 pop3://cm-incomiExample value:

ng-user:password@localhost:101

10

 6.0Since:

This value should not

be edited here using the

system properties

pop-up window, but the

mailboxes should be

configured using the file

card in theE-mail

Admin-Tool (see ConSo

l*CM Administrator

 sectionManual File

). UsingCard E-mail

this standard feature all

entries are controlled -

i.e. for each mailbox

which is added, CM

establishes a test

connection during

mailbox set-up. That

way it is not possible to

enter wrong values.

cmas-esb-mail mail.max.restarts Description: Maximum number of

mail service restarts before giving

up

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 3Example value:

 6.0Since:

314 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-esb-mail mail.mime.strict Description: If set to , mailfalse

addresses are not parsed for

strict MIME compliance. Default

is , which means check fortrue

strict MIME compliance.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.6.17, 6.7.3Since:

cmas-esb-mail mail.mule.service Description: address forFrom

mails sent by Mule service

 EMailType:

 NoRestart required:

 YesSystem:

 NoOptional:

 maz@consol.deExample value:

 6.0Since:

cmas-core-server mail.notification.engineerChange Description: Flag if notification

mail should be sent when

engineer of ticket is changed.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 trueExample value:

 6.1.0Since:

cmas-core-server mail.notification.sender Description: address forFrom

notification mails when engineer

of ticket is changed. If not set, cm

 isas-core-security admin.email

used instead.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 cm6notification@Example value:

cm6installation

 6.6.3Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 315

Module Property Explanation

cmas-esb-mail mail.polling.interval Description: Mail polling interval

in ms

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 60000Example value:

 6.0Since:

cmas-esb-mail mail.process.error Description: address for errorTo

mails from Mule. As a default the

e-mail address of the

administrator which you have

entered during system set-up is

used.

 EMailType:

 NoRestart required:

 YesSystem:

 NoOptional:

 maz@consol.deExample value:

 6.0Since:

cmas-esb-mail mail.process.retry.attempts Description: Number of retries

when processing mail

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 3Example value:

 6.0.2Since:

cmas-esb-mail mail.process.timeout Description: Mail processing

timeout in seconds

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 60Example value:

 6.1.3Since:

316 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-esb-mail mail.redelivery.retry.count Description: Indicates the number

of retries of re-delivering an

e-mail from the CM system.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 3Example value:

 6.1.0Since:

cmweb-server-adapter mail.reply.to Description: When set, Web

Client will display reply-to field on

mail send, prefilled with this

value.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.0.1Since:

Please see also ConSol

*CM Administrator

 section Manual Queue

.Administration

When you set the

REPLY TO address in

the outgoing e-mail

script, the mail.reply.to

system property must

not be set (because it

would overwrite the

configured value)! That

means when you use

one outgoing e-mail

script for a queue you

have to define outgoing

e-mail scripts for all

queues because the ma

 property canil.reply.to

no longer be used.

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 317

Module Property Explanation

cmas-workflow-jbpm mail.sender.address Description: address forFrom

mails from the workflow engine

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 maz@consol.deExample value:

 6.8.0Removed in:

 jobExecutor.mailFrReplaced by:

om

cmas-core-server mail.smtp.email Description: SMTP mail URL for

outgoing mails

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 smtp://mail.consExample value:

ol.de:25

 6.0Since:

cmas-core-server mail.smtp.envelopesender Description: Mail address used

as sender in SMTP envelope. If

not set, the address of theFrom:

mail is used.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 mysender@mydExample value:

omain.com

 6.5.7Since:

cmweb-server-adapter mailTemplateAboveQuotedText Description: Indicates behavior of

mail template in the Ticket E-Mail

Editor when another mail is

quoted, i.e. forwarded or replied

to.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.2.4Since:

318 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-server max.licences.perUser Description: Sets max licenses

single user can use (e.g logging

in from different browsers). By

default this value is not restricted.

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 10Example value:

 6.8.4.5Since:

cmweb-server-adapter maxSizePerPagemapInMegaByt

es

Description: Maximum size (in

MB) for each Wicket pagemap

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 15Example value:

 6.3.5Since:

cmas-core-server monitoring.engineer.login

 only version 6.9 and higher

Description: Login of monitoring

engineer

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 bartekExample value:

 6.9.3.0Since:

cmas-core-server monitoring.unit.login

 only version 6.9 and higher

Description: Login of monitoring

unit

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 bartekExample value:

 6.9.3.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 319

Module Property Explanation

cmas-dwh-server notification.error.description Description: Text for error mails

from DWH

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 Error occurredExample value:

 6.0.1Since:

cmas-dwh-server notification.error.from Description: address forFrom

error mails from DWH

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.0.1Since:

cmas-dwh-server notification.error.subject Description: Subject for error

mails from DWH

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 Error occurredExample value:

 6.0.1Since:

cmas-dwh-server notification.error.to Description: address for errorTo

mails from DWH

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 maz@consol.deExample value:

 6.0.1Since:

cmas-dwh-server notification.finished_successfully.

description

Description: Text for mails from

DWH when transfer finished

successfully.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 Transfer finishedExample value:

successfully

 6.0.1Since:

320 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-dwh-server notification.finished_successfully.

from

Description: address forFrom

mails from DWH when transfer

finished successfully.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.0.1Since:

cmas-dwh-server notification.finished_successfully.

subject

Description: Subject for mails

from DWH when transfer finished

successfully.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 Transfer finishedExample value:

successfully

 6.0.1Since:

cmas-dwh-server notification.finished_successfully.

to

Description: address for mailsTo

from DWH when transfer finished

successfully.

 YesRestart required:

 YesSystem:

 NoOptional:

 maz@consol.deExample value:

 6.0.1Since:

cmas-dwh-server notification.finished_unsuccessful

ly.description

Description: Text for mails from

DWH when transfer finished

unsuccessfully.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 Transfer finishedExample value:

unsuccessfully

 6.0.1Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 321

Module Property Explanation

cmas-dwh-server notification.finished_unsuccessful

ly.from

Description: address forFrom

mails from DWH when transfer

finished unsuccessfully.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.0.1Since:

cmas-dwh-server notification.finished_unsuccessful

ly.subject

Description: Subject for mails

from DWH when transfer finished

unsuccessfully.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 Transfer finishedExample value:

unsuccessfully

 6.0.1Since:

cmas-dwh-server notification.finished_unsuccessful

ly.to

Description: address for mailsTo

from DWH when transfer finished

unsuccessfully.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 maz@consol.deExample value:

 6.0.1Since:

cmas-dwh-server notification.host Description: Mail (SMTP) server

hostname for sending DWH mails

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 mail.consol.deExample value:

 6.1.0Since:

322 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-dwh-server notification.password Description: Password for

sending DWH mails (optional)

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.1.0Since:

cmas-dwh-server notification.port Description: SMTP port for

sending DWH mails

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 25Example value:

 6.1.0Since:

cmas-dwh-server notification.protocol Description: The protocol used

for sending emails from DWH.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 pop3\Example value:

cmas-dwh-server notification.username Description: (SMTP) User name

for sending DWH mails

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 mazExample value:

 6.1.0Since:

cmas-workflow-jbpm outdated.lock.age Description:

Type: Integer

 NoRestart required:

 YesSystem:

 NoOptional:

 60000Example value:

6.8.0Removed in:

jobExecutor.lockTiReplaced by:

meout.seconds

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 323

Module Property Explanation

cmweb-server-adapter pagemapLockDurationInSeconds Description: Number of seconds

to pass before pagemap is

considered to be locked for too

long.

 IntegerType:

 YesRestart required:

 YesSystem:

 YesOptional:

 60Example value:

 6.7.3Since:

cmweb-server-adapter postActivityExecutionScriptName Description: Defines the name for

the script which should be

executed after every workflow

activity (see ConSol*CM

 section Administrator Manual Ad

 min-Tool Scripts - Default

). If noWorkflow Activity Script

script should be executed, leave

the value empty.

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 postActivityExecExample value:

utionHandler

 6.2.0Since:

cmweb-server-adapter queuesExcludedFromGS Description: Comma-separated

list of queue names which are

excluded from global search.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 6.0Since:

324 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-workflow-jbpm refreshTimeInCaseOfConcurrent

RememberMeRequests

Description: It sets the refresh

time (in seconds) after which

page will be reloaded in case of

concurrent requestremember me

s. This feature prevents one user

from occupying many licenses.

Please increase that time if

sessions are still occupying.

 IntegerType:

 YesRestart required:

 YesSystem:

 YesOptional:

 5Example value:

 6.8.2Since:

cmweb-server-adapter rememberMeLifetimeInMinutes Description: Lifetime for rememb

 in minuteser me

 IntegerType:

 YesRestart required:

 YesSystem:

 NoOptional:

 1440Example value:

 6.0Since:

cmweb-server-adapter request.scope.transaction Description: It allows to disable

request scope transaction. By

default one transaction is used

per request. Setting this property

to there will cause onefalse

transaction per service method

invocation.

 BooleanType:

 YesRestart required:

 YesSystem:

 YesOptional:

 trueExample value:

 6.8.1Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 325

Module Property Explanation

cmas-setup-scene scene Description: Scene file which was

imported during setup (can be

empty).

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 vfszip:/P:/dist/tarExample value:

get/jboss/server/cmas/deploy/cm

-dist-6.5.1-SNAPSHOT.ear/APP-

INF/lib/dist-scene-6.5.1-SNAPSH

OT.jar/META-INF/cmas/scenes/h

elpdesk-sales_scene.jar/

 6.0Since:

cmweb-server-adapter searchPageSize Description: Default page size for

search results

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 20Example value:

 6.0Since:

cmweb-server-adapter searchPageSizeOptions Description: Options for page

size for search results

 StringType:

 NoRestart required:

 YesSystem:

 NoOptional:

 10|20|30|40|50|7Example value:

5|100

 6.0Since:

cmweb-server-adapter serverPoolingInterval Description:

Type: Integer

 NoRestart required:

 YesSystem:

 NoOptional:

 5Example value:

 6.1.0Since:

326 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-server server.session.archive.reaper.int

erval

Description: Server archived

sessions' reaper interval (in

seconds)

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 60Example value:

 6.7.1Since:

cmas-core-server server.session.archive.timeout Description: Server sessions

archive validity timeout (in days).

After this time session info is

removed from DB.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 31Example value:

 6.7.1Since:

cmas-core-server server.session.reaper.interval Description: Server inactive

(ended) sessions' reaper interval

(in seconds)

 IntegerType:

 Only SessionRestart required:

Service

 YesSystem:

 NoOptional:

 60Example value:

 6.6.1, 6.7.1Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 327

Module Property Explanation

cmas-core-server server.session.timeout Description: Server session

timeout (in seconds) for

connected clients. Each client

can overwrite this timeout with

custom value using its ID

(ADMIN_TOOL, WEB_CLIENT,

WORKFLOW_EDITOR, TRACK

(before 6.8 please use

PORTER), ETL, REST)

appended to property name, e.g.

server.session.timeout.ADMIN_T

OOL

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 1800Example value:

 6.6.1, 6.7.1Since:

cmas-dwh-server skip-ticket Description: Tickets are not

transferred during

transfer/update.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.6.19Since:

 6.8.1Removed in:

cmas-dwh-server skip-ticket-history Description: History of ticket is

not transferred during

transfer/update.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.6.19Since:

 6.8.1Removed in:

328 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-dwh-server skip-unit Description: Units are not

transferred during

transfer/update.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.6.19Since:

6.8.1Removed in:

cmas-dwh-server skip-unit-history Description: History of unit is not

transferred during

transfer/update.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 falseExample value:

 6.6.19Since:

 6.8.1Removed in:

cmas-dwh-server split.history Description: Changes the SQL

that fetches the history for the

tickets during DWH transfer not

to all tickets at once but only for

one ticket per SQL.

 BooleanType:

 NoRestart required:

 YesSystem:

 YesOptional:

 falseExample value:

 6.8.0Since:

cmweb-server-adapter supportEmail Description:

Type: String

 NoRestart required:

 YesSystem:

 YesOptional:

 6.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 329

Module Property Explanation

cmas-core-index-common synchronize.master.address Description: Value of -Dcmas.http

 informing how to.host.port

connect to indexing master

server. Default null. Since 6.6.17

this value is configurable in setup

to designate initial indexing

master server. Please note that

changing this value is only

allowed when all cluster nodes

index changes receivers are

stopped.

 IntegerType:

 NoRestart required:

 YesSystem:

 YesOptional:

 127.0.0.1:80Example value:

 6.6.0Since:

cmas-core-index-common synchronize.master.security.toke

n

Description: The password for

accessing the index snapshot via

URL, e.g. for index

synchronizaton or for back-ups.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 tokenExample value:

 6.6.0Since:

cmas-core-index-common synchronize.master.security.user Description: The user name for

accessing the index snapshot via

URL, e.g. for index

synchronizaton or for back-ups.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 userExample value:

 6.6.0Since:

330 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-index-common synchronize.master.timeout.minu

tes

Description: How much time

master server may constantly fail

until new master gets elected

with index fix procedure. Default

5. Since 6.6.17 this value is

configurable in setup where zero

means that master server will

never change (failover

mechanism is off).

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 5Example value:

 6.6.0Since:

cmas-core-index-common synchronize.megabits.per.second Description: How much

bandwidth can master server

consume to transfer index

changes to all slave servers.

Default 85. Please do not use all

available bandwidth to transfer

index changes between hosts.

This will most probably partition

cluster as some subsystems will

not be able to communicate.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 85Example value:

 6.6.0Since:

cmas-core-index-common synchronize.sleep.millis Description: How often each

slave server polls master server

for index changes. Default 1000.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 1000Example value:

 6.6.0Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 331

Module Property Explanation

cmweb-server-adapter themeOverlay Description: Name of used theme

overlay

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 kyoEURExample value:

 6.0Since:

cmas-core-server ticket.delete.timeout Description: Transaction timeout

(in seconds) for deleting tickets

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 60Example value:

 6.1.3Since:

cmweb-server-adapter ticketListRefreshIntervalInSecon

ds

Description: Refresh interval for

ticket list (in seconds)

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 180Example value:

 6.0Since:

cmweb-server-adapter ticketListSizeLimit Description: Maximum number of

tickets in ticket list

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 100Example value:

 6.0Since:

332 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-server tickets.delete.size Description: Property that defines

a number of tickets deleted per

transaction. By default it is set to

10.

 IntegerType:

 Only SessionRestart required:

Service

 YesSystem:

 NoOptional:

 10Example value:

 6.8.1Since:

cmweb-server-adapter unitIndexSearchResultSizeLimit Description: Maximum number of

units in unit search result (e.g.

when searching for contact)

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 5Example value:

 6.0Since:

cmas-core-server unit.replace.batchSize Description: Describes number of

objects to be processed in unit

replace action.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 5Example value:

 6.8.2Since:

cmas-core-server unit.replace.timeout Description: Transaction timeout

(seconds) of unit replacement

action step.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 120Example value:

 6.8.2Since:

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 333

Module Property Explanation

cmas-dwh-server unit.transfer.order Description: Define in which

order unit custom field groups

should be transferred to the

DWH.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 Example value: company;custom

er

 6.6.19Since:

 6.8.1Removed in:

cmas-core-server unused.content.remover.cluster.n

ode.id

 only version 6.9 and higher

Description: Value of a

cmas.clusternode.id designating

node which will remove unused

ticket attachments and unit

content entries.

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 1 (assumingExample value:

cluster node started with

-Dcmas.clusternode.id=1

parameter)

 6.9.0.0Since:

cmas-core-server unused.content.remover.enabled

 only version 6.9 and higher

Description: Flag whether unused

ticket attachments and unit

content entries removal should

take place.

 BooleanType:

 NoRestart required:

 YesSystem:

 NoOptional:

 trueExample value:

 6.9.0.0Since:

334 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

Module Property Explanation

cmas-core-server unused.content.remover.polling.

minutes

 only version 6.9 and higher

Description: How often unused

ticket attachments and unit

content entries should be

checked for removal.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 15Example value:

 6.9.0.0Since:

cmas-core-server unused.content.remover.ttl.minut

es

 only version 6.9 and higher

Description: Minimum interval

after which unused ticket

attachments and unit content

entries can be removed.

 IntegerType:

 NoRestart required:

 YesSystem:

 NoOptional:

 1440Example value:

 6.9.0.0Since:

cmweb-server-adapter urlLogoutPath Description: URL which is used

when user logs out. (If no value is

set, logout leads to login-mask.)

 StringType:

 NoRestart required:

 YesSystem:

 YesOptional:

 http://intranet.conExample value:

sol.de

 6.3.1Since:

cmweb-server-adapter webSessionTimeoutInMinutes Description: Session timeout in

minutes

 IntegerType:

 YesRestart required:

 YesSystem:

 NoOptional:

 180Example value:

 6.7.1Removed in:

 server.session.timeReplaced by:

out

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 335

Module Property Explanation

cmweb-server-adapter wicketAjaxRequestHeaderFilterE

nabled

Description: This enables filter for

Wicket AJAX requests, coming

from stale pages with Wicket 1.4

scripting (CM6 pre-6.8.0), after

update to CM6 post-6.8.0.

 BooleanType:

 YesRestart required:

 YesSystem:

 YesOptional:

 falseExample value:

 6.8.1Since:

336 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

12 Appendix D - Trademarks

Microsoft® – Microsoft and Windows are either registered trademarks or trademarks of Microsoft

Corporation in the United States and/or other countries. See Microsoft trademark web page

Microsoft® Office – Microsoft and Microsoft Office are either registered trademarks or trademarks of

Microsoft Corporation in the United States and/or other countries. See Microsoft trademark web page

Windows® operating system – Microsoft and Windows are either registered trademarks or trademarks

of Microsoft Corporation in the United States and/or other countries. See Microsoft trademark web

page

Microsoft® Active Directory® – Microsoft and Microsoft Active Directory are either registered

trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. See

Microsoft trademark web page

Microsoft® Word® – Microsoft and Microsoft Word are either registered trademarks or trademarks of

Microsoft Corporation in the United States and/or other countries. See Microsoft trademark web page

Microsoft® SQL Server® – Microsoft and Microsoft SQL Server are either registered trademarks or

trademarks of Microsoft Corporation in the United States and/or other countries. See Microsoft

trademark web page

MuleSoft and Mule ESB are among the trademarks of MuleSoft, Inc. See TM TM Mule Soft web page

Oracle® – Oracle is a registered trademark of Oracle Corporation and/or its affiliates. See Oracle

trademarks web page

Oracle® WebLogic – Oracle is a registered trademark of Oracle Corporation and/or its affiliates. See

Oracle trademarks web page

Pentaho® – Pentaho and the Pentaho logo are registered trademarks of Pentaho Inc. See Pentaho

trademark web page

http://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/en-us.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/en-us.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/en-us.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/en-us.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/en-us.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/en-us.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/en-us.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/en-us.aspx
http://www.mulesoft.com/
http://docs.oracle.com/cd/E28582_01/doc/dcommon/html/cpyr.htm
http://docs.oracle.com/cd/E28582_01/doc/dcommon/html/cpyr.htm
http://docs.oracle.com/cd/E28582_01/doc/dcommon/html/cpyr.htm
http://www.pentaho.com/trademarks
http://www.pentaho.com/trademarks

ConSol*CM Process Designer Manual (CM up to version 6.9.3) 337

13 Index

A
Access Rights (definition) 10

ACFs 71

Activity Control Forms 71

Additional Customer (definition) 19

Additional Engineer (definition) 20

C
Customer, additional (definition) 19

Customer, primary (definition) 19

Customer (definition) 10

Custom Fields (definition) 19

D
Descriptions in Properties Editor 40

E
Engineer, additional (short definition) 20

Engineer (definition) 19

H
History Visibilitiy in Properties Editor 42

L
Labels in Properties Editor 39

O
Overlays in Properties Editor 41

338 ConSol*CM Process Designer Manual (CM up to version 6.9.3)

P
Preconditions in Properties Editor 41

Primary Customer (definition) 19

Process (definition) 10

Processdesignermanual 6 8 U 6 9 , , , , , , , , , , , , , , 6 18 24 27 44 46 48 51 57 67 71 72 83 91

, , , , , , , , , , , , , , , , , , , 102 110 115 122 126 130 150 157 159 162 163 170 178 184 186 200 205 230 236 336

Q
Queue (definition) 19

R
Responsibilities (definition) 10

Roles (definition) 10

S
Sort Index in Properties Editor 40

System Properties 236

T
Task (definition) 10

Ticket (definition) 19

Triggers 71

W
Workflow (definition) 19

	Introduction to the ConSol*CM Process Designer
	ConSol*CM for Business Process Management
	This Manual
	Before You Read this Book ...
	The Book's Structure
	Layout Explanations

	Business Processes
	Introduction to Workflows in ConSol*CM
	The ConSol*CM Process Designer at a Glance
	Modeling Workflows
	Tickets and Activities
	Drag & Drop Modeling of Workflow Components
	Scopes and Nesting of Scopes
	Modeling Escalation Mechanisms (Triggers and Wait States)
	Modeling Interrupts and Exceptions
	Scripting Capabilities
	Versioning of Workflows

	Basic Components of ConSol*CM Processes
	General Objects
	Data Fields
	Data Fields in ConSol*CM Versions 6.8 and Earlier
	Data Fields in ConSol*CM Versions 6.9 and Higher

	Standard Ticket Data Fields

	ConSol*CM Process Designer Manual - Work with the Process Designer Application
	Work with the Process Designer Application
	Steps to Perform for a New Process
	Start of the Process Designer

	Process Designer GUI
	Introduction to the Process Designer GUI Elements
	Overview: GUI Sections
	Main Menu
	Workflow Editing Panel
	Loading and Deleting Workflows
	Loading a Workflow
	Deleting a Workflow

	Palette for Elements and Adornments
	Elements
	Adornments

	The Properties Editor (Example: Activity)

	The Script Editor

	ConSol*CM Process Designer Manual - Components of ConSol*CM Workflows
	Components of ConSol*CM Workflows
	Introduction

	Workflow Components: START Node
	Properties of a Start Node

	Workflow Components: END Nodes
	Properties of an End Node

	Workflow Components: Scopes
	Introduction to Scopes
	Defining a New Scope
	Properties of a Scope
	Scopes and Views

	Workflow Components: Activities
	Introduction to Activities
	Properties of an Activity
	Process Logic of Activities
	Examples for Activities
	Example 1: Precondition for Displaying Activity "Inform team lead"
	Example 2: Send an E-Mail to the Main Contact When a Ticket Has Been Opened
	Example 3: Assign the Ticket to the Current Engineer

	Workflow Components: Decision Nodes
	Introduction to Decision Nodes
	Properties of a Decision Node
	Example for a Decision Node

	ConSol*CM Process Designer Manual - Adornments (Triggers and ACFs)
	Adornments (Triggers and ACFs)
	Time Triggers
	Introduction to Time Triggers
	Adding a Time Trigger to a Workflow
	Adding a Time Trigger to a Scope
	Adding a Time Trigger to an Activity

	Properties of a Time Trigger
	Business Logic and Initialization of a Time Trigger
	Examples for Time Triggers
	Scripting with Time Triggers
	Example 1: Set the Due Time of a Time Trigger Depending on the Queue
	Example 2: Calculate an Escalation as Warning 2 Days before Desired End Date

	Mail Triggers
	Introduction to Mail Triggers
	Mail Trigger at a Scope
	Mail Trigger at an Activity

	Adding a Mail Trigger to a Workflow
	Adding a Mail Trigger to a Scope
	Adding a Mail Trigger to an Activity

	Properties of a Mail Trigger
	Examples for Mail Triggers
	Use Case 1: Overlay for Ticket Icon
	Use Case 2: Overlay for Ticket Icon and E-Mail Confirmation by Engineer

	Process Logic with Mail Triggers

	Business Event Triggers
	Introduction to Business Event Triggers
	Adding a Business Event Trigger to a Workflow
	Adding a Business Event Trigger to a Scope

	Properties of a Business Event Trigger
	Business Logic of Business Event Triggers
	Firing Order of Serialized Business Event Triggers
	Firing Order of Business Event Triggers in Hierarchical Scopes
	Case 1
	Case 2
	Case 3

	Examples for Business Event Triggers
	Use Case 1: Check Engineer Comment
	Use Case 2: Re-Calculate the Ticket Priority if Impact and/or Urgency Have Been Changed
	Use Case 3: Continue Delivery Process When Shipment for the Order Has Arrived

	Best Practices: Using Business Event Triggers

	Activity Control Forms (ACFs)
	Introduction to ACFs
	Adding an ACF to a Workflow
	Variant A: Starting the ACF Definition Using the Admin-Tool
	Variant B: Starting the ACF Definition Using the Process Designer

	Properties of an ACF
	Business Logic of ACFs
	ACF at Manual Activity
	ACF at Manual Activity with Condition

	Examples for the Use of ACFs
	Use Case 1: ACF for the Dismissal of a Customer Request
	Use Case 2: Fill-in Sales Information when Bid is Created

	Jump-out and Jump-in Nodes
	Introduction
	Jump-out Nodes
	Properties of a Jump-out Node

	Jump-in Nodes
	Properties of a Jump-in Node

	Process Logic
	Activities
	Interrupts and Exceptions
	Interrupts
	Exceptions

	Loops (Errors in Workflows)
	Process Logic of Time Triggers
	Process Logic of Business Event Triggers

	ConSol*CM Process Designer Manual - Workflow Programming
	Workflow Programming
	Introduction
	Additional Tools for Workflow Programming
	Notes About Method Syntax
	Getter Methods Can Often Be Omitted
	Setter Methods Can Often Be Omitted

	Important Classes and Objects
	Introduction
	Important Objects
	Ticket
	workflowAPI

	Convenience Classes and Methods
	Example 1: Using ConfigurationService to Retrieve System Properties
	Example 2: Using EngineerService to Assign the Ticket to an Approver
	Example 3: Using EnumService to Retrieve an Enum Value by Name
	Example 4: Using TicketService to Retrieve all Tickets of a Certain View
	Example 5: Using EngineerRoleRelationService to Send an E-Mail to All Engineers of a Role

	Working With Data Fields
	Introduction to Data Fields
	ConSol*CM Version 6.8 and Older
	ConSol*CM Version 6.9 and Higher

	Data Types for Data Fields
	Custom Fields for Ticket Data
	Most Important Methods for Access to Ticket Custom Fields
	Retrieve Custom Field Values for Ticket Data
	Simple Data Types
	Enum Values
	Lists
	Lists of Simple Data Types
	Lists of Structs (Tables)

	Setting Custom Field Values for Ticket Data
	Setting Values for Custom Fields with Simple Data Types
	Setting Enum Values
	Setting List Values
	Setting Values in Lists of Simple Data Types
	Setting Values in Lists of Structs

	Fading-in and -out of Custom Field Groups

	Data Fields for Customer Data
	Custom Fields for Customer Data (CM Version 6.8 and Older)
	Retrieving Values
	Setting Values for Customer Data in CM Version 6.8 and Older

	Data Object Group Fields for Customer Data (CM Version 6.9 and Higher)
	Most Important Methods for Access to Customer Data Data Object Group Fields
	Retrieving Values for Customer Data in CM Version 6.9 and Higher
	Setting Values for Customer Data in CM Version 6.9 and Higher
	Setting Values for Data Object Group Fields with Simple Data Types
	Lists
	Setting Values in a List of Structs for Customer Data

	Convenience Methods for Access to Customer Data in CM Version 6.9 and Higher

	Using Data Fields for (Invisible) Variables

	Sending E-Mails
	Introduction to Sending E-Mails
	Important Methods
	ConSol*CM Version 6.8 and Older
	ConSol*CM Version 6.9 and Higher

	Examples
	Sending an Automatic Acknowledgment of Receipt to the Customer When He/She Has Opened a Ticket
	ConSol*CM Version 6.8 and Older
	ConSol*CM Version 6.9 and Higher

	Sending an E-Mail to the Engineer When a Certain Escalation Level Has Been Reached
	ConSol*CM Version 6.8 and Older
	ConSol*CM Version 6.9 and Higher
	Sending an E-Mail to a Customer Integrating the Queue-Specific Mail Script

	Sending an E-Mail to All Contacts of the Ticket
	Sending an E-Mail to Each Contact in a List of All Contacts of the Ticket

	Working with Path Information
	Introduction
	Retrieve Path Information for a Workflow Element
	Examples for the Use of Path Information
	Example 1: Deactivate and/or Re-Initialize a Time Trigger

	Working with Calendars and Times
	Introduction
	Calculating with Dates and Times without a CM Business Calendar
	Example: Setting a Time Trigger Time with Dynamic Time Range

	Calculating with Dates and Times Using a CM Business Calendar
	Example: Using a Time Trigger with a Business Calendar to Calculate Escalation Time (CM 6.9)

	ConSol*CM Process Designer Manual - Working with Object Relations
	Working with Object Relations
	Working with Ticket Relations
	Introduction
	Simple Ticket Relation without a Hierarchy
	Example: Creating a Simple Relation between Two Tickets

	Master-Slave Relations
	Example: Creating a Master-Slave Relation between Two Tickets
	Syntax: Finding All Slave Tickets

	Parent-Child Relations
	Example 1: Creating a New Child Ticket as Child of Current Ticket
	Example 2: Finding the Parent Ticket of a Ticket
	Example 3: Finding All Child Tickets of a Ticket
	Example 4: Finding All Brother Tickets (Other Child Tickets) of the Same Parent Ticket

	Important Methods for the Work with Ticket Relations

	Working with Customer Relations (Data Object Relations)
	Introduction
	Creating Unit Relations Using the Programming Interface
	Example: Add a Reseller - End Customer Relation

	Important Java Classes for the Work with Unit Relations

	Searching for Tickets and Customers Using the ConSol*CM Workflow API
	Introduction
	Searching for Tickets
	Example 1: General Example to Search for Tickets
	Example 2: Find All Tickets with the Same Service as the Current Ticket
	Example 3: Search for Tickets by Unit

	Searching for Units (Contacts and Companies)
	Example 1: Search for Contacts by First Name and Last Name
	General Syntax for Unit Search by Enum Value
	Example 2: Search for Units by Enum Value

	Debug Information
	Introduction
	Using Statements for Debug Output
	Debug Output to server.log File
	Debug Output as Text Entry in Ticket
	Debugging ConSol*CM Standard Scripts

	Best Practices
	The Basic Organization of a Workflow: Using Scopes
	Variant A: Use of a Global Scope
	Variant B: Use of Three or More Main Scopes

	The Position of the START Node
	Store Some Workflow Scripts in the Admin-Tool
	When to Use Admin-Tool Workflow Scripts
	How to Use Admin-Tool Workflow Scripts

	Consider the Use of Trigger Combinations Well
	Do Not Trigger Ticket Update Events If Not Really Required
	How to Use the Disable Auto Update Parameter
	Avoid Self-Triggering Business Event Triggers

	Deploying Workflows
	Introduction and Workflow Life Cycle
	Engineer Rights Required for Workflow Deployment
	Actions During Workflow Deployment

	Appendix A - List of Annotations
	Alphabetical List of Field Annotations (up to Version 6.9.3)
	Alphabetical List of Group Annotations (Version 6.8 and Older)
	Alphabetical List of Group Annotations (Version 6.9 and Higher)

	Appendix B - Glossary
	Appendix C - System Properties
	System Properties Ordered by Module
	System Properties Ordered by Property Name

	Appendix D - Trademarks
	Index

